Code Walkthrough

CSE 142, Summer 2003
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/03su/

16-July-2003 csel4?2-11-CodeExample © 2003 University of Washington

Readings and References

e Reading
» Chapter 6, Intro to Programming and Object-Oriented

Design Using Java, Nifio and Hosch

* The code in this lecture is an extended version of the example
given in Chapter 6

16-July-2003 csel4?2-11-CodeExample © 2003 University of Washington

/**

* This class uses a Cracker to open a Digital Lock.

*/
public class WiteHat {
/**
* Create various locks and try to pick them
* @aramarg user argunents. lgnored in this inplenentation
*/

public static void main(String arg[]) {
Di gital Lock | ock;
i nt conbo;
Cracker fingers = new Cracker();
for (int i=0; i1<=1000; i++) {
| ock = new Digital Lock(i);
conbo = fingers. pick(l ock);
i f (conmbo !'=1) {
Systemout.println("Couldn't pick "+i+", returned "+conbo);
}
}

/] create one nore lock with a random conbi nati on

i nt theConbination = (int)(Mth.randon()*1000);
| ock = new Digital Lock(theConbi nati on);
System out. println("Random conbi nati on was "+fi ngers. pi ck(l ock));

WhiteHat Ponder points

 How many local variables of type DigitalLock are declared in the main method?

 How many objects of type DigitalLock are created when WhiteHat main(...) runs?

 How many objects of type Cracker are created when WhiteHat main(...) runs?

» Are any parameters passed to the Cracker constructor?

» Are any parameters passed to the pick method of the Cracker object?

e Can we tell from looking at main(...) what the return type from pick(lock) is?

e Can we tell from looking at main(...) what the return type from Math.random() is?

 How would you start this program running? Where does execution first begin?

16-July-2003 csel4?2-11-CodeExample © 2003 University of Washington

/**

* This class is used in conjunction with a lock class to see if it
* can open the | ock wthout know ng the original conbination.
*/
public class Cracker {
/**
* Attenpt to pick the given | ock by guessing the conbinati on.
* @aramlock the lock to work on
* @eturn the conbination that worked or -1 if fail ed.
*/
public int pick(Di gital Lock |ock) {
for (int i = 0; i<10; i++) {
for (int j=0; j<10; j++) {
for (int k=0; k<10; k++) {
| ock. cl ose();
| ock.enter(i);
| ock.enter(j);
| ock. enter (k) ;

if (lock.isOpen()) {
return i *100+j *10+k;
}

}
}
}
return -1;

}

Cracker Ponder Points

e s there a constructor for Cracker?

» What type of parameter is passed to the pick method?

« Are there any local variables used in the pick method?

* How many times does the pick method call the isOpen method if the combination is 99?

e Under what circumstances will pick return O to its caller?

e Under what circumstances will pick return -1 to its caller?

16-July-2003 csel4?2-11-CodeExample © 2003 University of Washington

/**

* Alock wth a three digit conbination. This class is derived from

* the exanple in Nino and Hosch, chapter 6. These |locks are created in the
open state. They can be cl osed, then reopened by providing the right
conbi nation of digits. Also, these |locks are welded cl osed after certain
errors. Once a lock is welded, no entry will match the conbi nation
and the | ock stays cl osed forever.

/

public class Digital Lock {

* ok % ¥ X

DigitalLock instance variables

[** state of the |ock */
private bool ean open;

/** certain errors wll cause the lock to be welded after which it won't open */
private bool ean wel ded;

[** first (leftnost) digit of the conmbination. O to 9 */
private int conbl;

/** second (mddle) digit of the conbination. 0 to 9 */
private int conb2;

[** third (rightnost) digit of the conbination. O to 9 */
private int conb3;

/**

* The first of the last three digit entries. -1 indicates the digit
* has not been entered.
*/
private int enteredl
/** The second of the last three digit entries. */
private int entered2;
/** The |l ast of the last three digit entries (ie, the nost recent entry). */
private int entered3;

~~
*
*

}

* ok ok k% kK F ok

*

*

DigitalLock constructor

Create a lock wwth the given three digit conbination. The |ock
IS in the open state after it is created unless an invalid

conbi nation setting is supplied in which case the lock is wel ded
cl osed and can never be opened.

Conbi nati on values < 100 are assuned to have |eadi ng zeros.

@ar am t heConbi nati on the conbi nati on value for this | ock.

The digit in the 100's position is considered to be the first
digit of the conbination, the 10's position is the second digit,
and the units positionis the third digit.

This value nmust be >=0 and <=999. If it is not, then

the lock is wel ded cl osed.

*/
public Digital Lock(int theConbination) {

set Conbi nati on(t heConbi nati on);
clearEntries();

/**

* Enter a digit of the conbination. The |ock is opened if

* the three digits of the conbination are entered in

* order.

* @aramdigit the single digit entry. Mist be a single decinmal digit 0-9.
*/

public void enter (int digit) {

T (digit >=0 && digit <=9) { Some public methods
enteredl = entered2;
entered2 = entered3;
entered3 = digit;

i f (isValidConbination(enteredl, entered2, entered3)) {
open = true;
}

}
}
/**
* Get the state of the | ock.
* @eturn true if the lock is open, false if the |ock is closed.
*/
publ i c bool ean i sOpen() {
return !'wel ded && open;

}
/**
* Close this lock. Any partially entered conbination is cleared.
*/
public void close() {
open = fal se;
clearEntries();

}

A private method

/**
* Set the conbination of the lock to a new value. The | ock
* is in the open state after this operation unless an invalid
* conbination is supplied in which case the |ock is wel ded cl osed
* and can never be opened.
* Conbi nation val ues < 100 are assuned to have | eadi ng zeros.
* @aram theConbi nati on the conbination value for this | ock.
* The digit in the 100's position is considered to be the first
* digit of the conbination, the 10's position is the second digit,
* and the units position is the third digit.
* This value nust be >=0 and <=999. If it is not, then
* the lock is welded cl osed.
*/

private void set Conbi nati on(int theConbination) {
I f (theConbinati on >=0 && t heConbi nati on <=999) {
wel ded = fal se; /1 this |ock can open and cl ose

conbl = (theConbination / 100) % 10;
conb2 = (theConbination / 10) % 10;
conmb3 = (theConbi nation) % 10;
} else {
wel ded = true; /1 this lock will never open
conbl = conb2 = conb3 = O; /1l doesn't matter, |lock is wel ded
}
open = !wel ded;

}

}

/**

* Check to see if the given value is a valid conbination for this |ock.
* @aramtheC the conbination to check
* @eturn true if the proposed conbination will unlock the |ock.
*/
private bool ean isValidConbination(int theC {
return isValidConbination((theC 100)9%.0, (theC 10) %0, (t heC) %.0);
}
/

*

Check to see if the given values forma valid conbination for this | ock.
|f the lock is welded closed, then no proposed conbination wll be
accepted as valid, even if it does match the |ock's conbination.
@aramfirst the first digit of the proposed conbination

@ar am second the second digit of the proposed conbi nation

@aramthird the third digit of the proposed conbination

@eturn true if the proposed conbination will unlock the |ock. Note that
*1f the lock is welded closed, then nothing will unlock it.

*/

private bool ean isValidConbination(int first, int second, int third) {

I f (welded) return fal se;

return (first == conbl) && (second == conb2) && (third == conb3);

L I R T

}
/**
* Clear previous entries.
*/
private void clearEntries() {
enteredl = -1; .
entered2 = -1 More private methods
entered3 = -1;
}

/! end of class definition

DigitalLock Ponder Points

« Areany local variables used in the DigitalLock constructor?

» Does the enter(int digit) method return a value to its caller?

» Does the isOpen() method return a value to its caller?

« What does the enter(int digit) method do if the given digit is not valid? What if it is valid?

* How does isValidCombination(int theC) calculate the value that it returns to its caller?

16-July-2003 csel4?2-11-CodeExample © 2003 University of Washington

14

