
16-July-2003 cse142-11-CodeExample © 2003 University of Washington 1

Code Walkthrough

CSE 142, Summer 2003
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/03su/

16-July-2003 cse142-11-CodeExample © 2003 University of Washington 2

Readings and References

• Reading
» Chapter 6, Intro to Programming and Object-Oriented

Design Using Java, Niño and Hosch
• The code in this lecture is an extended version of the example

given in Chapter 6

/**
* This class uses a Cracker to open a DigitalLock.
*/

public class WhiteHat {
/**
* Create various locks and try to pick them.
* @param arg user arguments. Ignored in this implementation
*/

public static void main(String arg[]) {
DigitalLock lock;
int combo;
Cracker fingers = new Cracker();
for (int i=0; i<=1000; i++) {

lock = new DigitalLock(i);
combo = fingers.pick(lock);
if (combo != i) {

System.out.println("Couldn't pick "+i+", returned "+combo);
}

}

// create one more lock with a random combination

int theCombination = (int)(Math.random()*1000);
lock = new DigitalLock(theCombination);
System.out.println("Random combination was "+fingers.pick(lock));

}
}

16-July-2003 cse142-11-CodeExample © 2003 University of Washington 4

WhiteHat Ponder points
• How many local variables of type DigitalLock are declared in the main method?

• How many objects of type DigitalLock are created when WhiteHat main(…) runs?

• How many objects of type Cracker are created when WhiteHat main(…) runs?

• Are any parameters passed to the Cracker constructor?

• Are any parameters passed to the pick method of the Cracker object?

• Can we tell from looking at main(…) what the return type from pick(lock) is?

• Can we tell from looking at main(…) what the return type from Math.random() is?

• How would you start this program running? Where does execution first begin?

/**
* This class is used in conjunction with a lock class to see if it
* can open the lock without knowing the original combination.
*/

public class Cracker {
/**
* Attempt to pick the given lock by guessing the combination.
* @param lock the lock to work on
* @return the combination that worked or -1 if failed.
*/

public int pick(DigitalLock lock) {
for (int i = 0; i<10; i++) {

for (int j=0; j<10; j++) {
for (int k=0; k<10; k++) {

lock.close();
lock.enter(i);
lock.enter(j);
lock.enter(k);
if (lock.isOpen()) {

return i*100+j*10+k;
}

}
}

}
return -1;

}
}

16-July-2003 cse142-11-CodeExample © 2003 University of Washington 7

Cracker Ponder Points
• Is there a constructor for Cracker?

• What type of parameter is passed to the pick method?

• Are there any local variables used in the pick method?

• How many times does the pick method call the isOpen method if the combination is 99?

• Under what circumstances will pick return 0 to its caller?

• Under what circumstances will pick return -1 to its caller?

/**
* A lock with a three digit combination. This class is derived from
* the example in Nino and Hosch, chapter 6. These locks are created in the
* open state. They can be closed, then reopened by providing the right
* combination of digits. Also, these locks are welded closed after certain
* errors. Once a lock is welded, no entry will match the combination
* and the lock stays closed forever.
*/
public class DigitalLock {

/** state of the lock */
private boolean open;

/** certain errors will cause the lock to be welded after which it won't open */
private boolean welded;

/** first (leftmost) digit of the combination. 0 to 9 */
private int comb1;
/** second (middle) digit of the combination. 0 to 9 */
private int comb2;
/** third (rightmost) digit of the combination. 0 to 9 */
private int comb3;

/**
* The first of the last three digit entries. -1 indicates the digit
* has not been entered.
*/
private int entered1;
/** The second of the last three digit entries. */
private int entered2;
/** The last of the last three digit entries (ie, the most recent entry). */
private int entered3;

DigitalLock instance variables

/**
* Create a lock with the given three digit combination. The lock
* is in the open state after it is created unless an invalid
* combination setting is supplied in which case the lock is welded
* closed and can never be opened.
* Combination values < 100 are assumed to have leading zeros.
* @param theCombination the combination value for this lock.
* The digit in the 100's position is considered to be the first
* digit of the combination, the 10's position is the second digit,
* and the units position is the third digit.
* This value must be >=0 and <=999. If it is not, then
* the lock is welded closed.
*/
public DigitalLock(int theCombination) {
setCombination(theCombination);
clearEntries();

}

DigitalLock constructor

/**
* Enter a digit of the combination. The lock is opened if
* the three digits of the combination are entered in
* order.
* @param digit the single digit entry. Must be a single decimal digit 0-9.
*/
public void enter (int digit) {
if (digit >= 0 && digit <= 9) {
entered1 = entered2;
entered2 = entered3;
entered3 = digit;
if (isValidCombination(entered1, entered2, entered3)) {
open = true;

}
}

}
/**
* Get the state of the lock.
* @return true if the lock is open, false if the lock is closed.
*/
public boolean isOpen() {
return !welded && open;

}
/**
* Close this lock. Any partially entered combination is cleared.
*/
public void close() {
open = false;
clearEntries();

}

Some public methods

/**
* Set the combination of the lock to a new value. The lock
* is in the open state after this operation unless an invalid
* combination is supplied in which case the lock is welded closed
* and can never be opened.
* Combination values < 100 are assumed to have leading zeros.
* @param theCombination the combination value for this lock.
* The digit in the 100's position is considered to be the first
* digit of the combination, the 10's position is the second digit,
* and the units position is the third digit.
* This value must be >=0 and <=999. If it is not, then
* the lock is welded closed.
*/
private void setCombination(int theCombination) {
if (theCombination >=0 && theCombination <=999) {
welded = false; // this lock can open and close
comb1 = (theCombination / 100) % 10;
comb2 = (theCombination / 10) % 10;
comb3 = (theCombination) % 10;

} else {
welded = true; // this lock will never open
comb1 = comb2 = comb3 = 0; // doesn't matter, lock is welded

}
open = !welded;

}

A private method

/**
* Check to see if the given value is a valid combination for this lock.
* @param theC the combination to check
* @return true if the proposed combination will unlock the lock.
*/
private boolean isValidCombination(int theC) {
return isValidCombination((theC/100)%10,(theC/10)%10,(theC)%10);

}
/**
* Check to see if the given values form a valid combination for this lock.
* If the lock is welded closed, then no proposed combination will be
* accepted as valid, even if it does match the lock's combination.
* @param first the first digit of the proposed combination
* @param second the second digit of the proposed combination
* @param third the third digit of the proposed combination
* @return true if the proposed combination will unlock the lock. Note that
* if the lock is welded closed, then nothing will unlock it.
*/
private boolean isValidCombination(int first, int second, int third) {
if (welded) return false;
return (first == comb1) && (second == comb2) && (third == comb3);

}
/**
* Clear previous entries.
*/
private void clearEntries() {
entered1 = -1;
entered2 = -1;
entered3 = -1;

}
} // end of class definition

More private methods

16-July-2003 cse142-11-CodeExample © 2003 University of Washington 14

DigitalLock Ponder Points
• Are any local variables used in the DigitalLock constructor?

• Does the enter(int digit) method return a value to its caller?

• Does the isOpen() method return a value to its caller?

• What does the enter(int digit) method do if the given digit is not valid? What if it is valid?

• How does isValidCombination(int theC) calculate the value that it returns to its caller?

