
9-July-2003 cse142-08-conditionals © 2003 University of Washington 1

Conditionals

CSE 142, Summer 2003
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/03su/

9-July-2003 cse142-08-conditionals © 2003 University of Washington 2

Readings and References

• Reading
» Chapter 6, Intro to Programming and Object-Oriented

Design Using Java, Niño and Hosch

• References
» "Language Basics", Java tutorial

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/index.html

9-July-2003 cse142-08-conditionals © 2003 University of Washington 3

Implementing Interesting Behavior

• We need to be able to make decisions in order to
have objects behave in interesting ways
» Has this Acrobat been asked to do anything yet?
» Did the user supply any arguments to the program?
» Is the display window visible?
» Is myPet's name the same as yourPet's name?

• The if statement is our primary tool for
changing the flow of control in the program

9-July-2003 cse142-08-conditionals © 2003 University of Washington 4

Sequences and Blocks

// Simple sequence of statements

statement1;
statement2;

// Block - can replace a single statement anywhere

{
statement1;
statement2;

}

9-July-2003 cse142-08-conditionals © 2003 University of Washington 5

The if statement
if (condition) {

this block is executed if the condition is true
} else {

this block is executed if the condition is false
}

• The condition is a logical expression that is
evaluated to be true or false, depending on
the values in the expression and the operators

9-July-2003 cse142-08-conditionals © 2003 University of Washington 6

operators that produce boolean results

• All of the normal arithmetic comparison
operators are available
> : greater than
< : less than
>= : greater than or equal
<= : less than or equal
== : equal
!= : not equal

9-July-2003 cse142-08-conditionals © 2003 University of Washington 7

examples

• numeric comparisons are extremely common

public void twirl(int k) {
System.out.println(familyName+" twirled "+k+" times.");
twirlCount = twirlCount + k;
if (twirlCount > twirlTarget) {

System.out.println("I'm getting tired of twirling!");
}

}

if (count == limit) {
messageDialog.warn("count has reached limit");

}

see Acrobat in ex8

9-July-2003 cse142-08-conditionals © 2003 University of Washington 8

Compound expressions

• We can combine various logical expressions
together to make one larger expression

if (arg != null && arg.equals(“begin”)) {

process the beginning of something …

}

• There are operators for “and”, “or” and “not”
&& : and

|| : or

! : not

9-July-2003 cse142-08-conditionals © 2003 University of Washington 9

examples
• the “not” operator can be handy for clarity in some

cases, but it can also be confusing, so use carefully

if (!ready) {

messageDialog.warn(“system not ready”);

}

• the && and || operators are “shortcut” operators
» they stop evaluation as soon as the logical condition is

satisfied

if (arg != null && arg.equals(“green”)) {

myColor = Color.green;

}

9-July-2003 cse142-08-conditionals © 2003 University of Washington 10

Use braces and parentheses liberally

• Better safe than sorry
» Parentheses surround parts of an expression
» Braces surround a block of code, even one line

if ((a==b) && ((c+d) == e)) {
state.advance(a);

} else {
state.retreat(e);

}

9-July-2003 cse142-08-conditionals © 2003 University of Washington 11

multiple cases

• You can chain if statements together to select
one of several possibilities

if (arg.equals(“green”)) {

myColor = Color.green;

} else if (arg.equals(“blue”)) {

myColor = Color.blue;

} else {

myColor = defaultColor;

}

9-July-2003 cse142-08-conditionals © 2003 University of Washington 12

boolean expressions and variables

• If you find yourself doing something like this
if (pageNumber == lastPage) {

allDone = true;

} else {

allDone = false;

}

• there is an easier way
allDone = (pageNumber == lastPage);

boolean variable boolean expression

9-July-2003 cse142-08-conditionals © 2003 University of Washington 13

conditional operator (3 operands)

• If you find yourself doing something like this
if (score < 0) {

color = Color.red;

} else {

color = Color.black;

}

• there is an easier way
color = (score < 0) ? Color.red : Color.black;

variable boolean expression

use this value if expression is true

use this value if expression is false

9-July-2003 cse142-08-conditionals © 2003 University of Washington 14

Expression using a returned boolean

• methods can return boolean values too

if (arg.equals(“green”)) {

myColor = Color.green;

} else {

myColor = defaultColor;

}

9-July-2003 cse142-08-conditionals © 2003 University of Washington 15

returning a boolean value

• It is often convenient to return a boolean
expression from a method

public boolean isEmpty() {

return (this.itemCount == 0);

}

itemCount is an instance variable in this example

9-July-2003 cse142-08-conditionals © 2003 University of Washington 16

comparing floating point numbers

• Never, never test for exact equality of two
floating point numbers using ==
» double and float values are approximate values

which may vary slightly way out to the right of the
decimal point

» 1.00000000000000000000000001
» 1.00000000000000000000000002
» Are they equal?

• NO. But probably close enough for our purposes ...

9-July-2003 cse142-08-conditionals © 2003 University of Washington 17

floating point compare

• check for exceeding a limit
if (xVal >= maxX) { …

if (yVal < 0.0) { …

• check for difference less than some small amount
double epsilon = 0.00001;

if (Math.abs(xVal-xGoal) < epsilon) {...

9-July-2003 cse142-08-conditionals © 2003 University of Washington 18

switch statement

switch (integral type) {

case value1 : {
statement1;
break; //Break out of switch

}
case value2 : {

statement2;
break;

}
default : {

statement3;
}

}

there are lots of limitations and potential bugs in using this, so be careful!

