
7-July-2003 cse142-07-structure © 2003 University of Washington 1

Structure of Classes

CSE 142, Summer 2003
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/03su/

7-July-2003 cse142-07-structure © 2003 University of Washington 2

Readings and References

• Reading
» Chapter 5, Intro to Programming and Object-Oriented

Design Using Java, Niño and Hosch

• References
» "Language Basics", Java tutorial

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/index.html

» "javadoc - The Java API Documentation Generator"
http://java.sun.com/j2se/1.4/docs/tooldocs/windows/javadoc.html

7-July-2003 cse142-07-structure © 2003 University of Washington 3

Basic Class Structure

/**
* Simple class to illustrate structure of a class definition.
*/
public class Acrobat {

// Properties …

//-------------------------

// Responsibilities …

}

Initial comment describes the
overall purpose of the class.

The statements between the curly
brackets actually define the class.

7-July-2003 cse142-07-structure © 2003 University of Washington 4

Properties are stored as instance variables

/**
* Simple class to illustrate structure of a class definition.
*/
public class Acrobat {

/** the specific name of this person */
private String givenName;

/** the surname or family name of this person */
private String familyName;

/** the cumulative action count for this Acrobat. */
private int actionCount;

7-July-2003 cse142-07-structure © 2003 University of Washington 5

Responsibilities are implemented in methods

/**
* Twirl around as instructed. Note that since we don't yet
* have any fancy graphics capabilities our twirling is limited
* to just saying that we twirled, without any actual twirlosity.
* @param k the number of times to twirl
*/
public void twirl(int k) {
System.out.println(familyName+" twirled "+k+" times.");
actionCount = actionCount + k;
}

These are the statements that
make up the body of the method.

7-July-2003 cse142-07-structure © 2003 University of Washington 6

Structure of a class definition

7-July-2003 cse142-07-structure © 2003 University of Washington 7

Instance variables

• Instance variables are the way an object keeps track
of its state
» One set of instance variables for each instance of the class
» Each object has its own set of instance variables

• Instance variables are declared outside the body of
any constructor or method (but within the definition
of the class)
» “within the definition of the class” means “between the

outside pair of curly braces”
• Instance variables retain their values as long as the

object exists

7-July-2003 cse142-07-structure © 2003 University of Washington 8

Lifetime of an instance variable

• When an object is created with new, Java allocates
a chunk of memory for the object
» the allocation has space in it for each instance variable

• After allocation the appropriate constructor is
called to initialize the instance variables
» The programmer is responsible for making sure that

the initialization is done correctly and completely
• Instance variables exist from the time an object is

created until the time it is destroyed

7-July-2003 cse142-07-structure © 2003 University of Washington 9

Classes and objects in memory

7-July-2003 cse142-07-structure © 2003 University of Washington 10

Initialization and constructors

/**
* Create a new Acrobat using the name information provided.
* @param given the specific name of this person
* @param family the surname or family name of this person
*/
public Acrobat(String given,String family) {
givenName = given;
familyName = family;
actionCount = 0;
}

• Initialization (another responsibility) is mostly
done in constructors

These are the statements that make
up the body of the constructor.

7-July-2003 cse142-07-structure © 2003 University of Washington 11

Constructors

• A constructor is used when creating a new object of a
particular class

• Constructors are special methods that are called with
the new operator
» Dog myDog = new Dog("Rover");

• The name of a constructor is the same as the name of
the class
» Dog(String name) is a constructor for the class Dog

• The constructor initializes everything according to its
defaults and user supplied parameter values

7-July-2003 cse142-07-structure © 2003 University of Washington 12

Local variables
• Local variables are the way that a constructor or

method creates little scratchpad notes to use as it
performs its responsibility

• Local variables are declared within the body of the
constructor or method
» “within the body of the method” means “between the curly braces”

public void sleep () {

double nightLength = 8.5;

this area is the body of the method
}

• Local variables can be used exactly as any other
variable is used, but they have a limited lifetime

7-July-2003 cse142-07-structure © 2003 University of Washington 13

Lifetime of a local variable

• When a constructor or method executes a statement that
declares a local variable, a little chunk of memory is made
available that it can use for the variable
» The variable is not initialized until the method does the initialization

itself

• The constructor or method can refer to the variable throughout
the remainder of the body

• These local variables are thrown away when body of the
method is finished executing
» Next time the method is called, the variables will be allocated fresh
» There is no carryover of value from one execution to the next!

7-July-2003 cse142-07-structure © 2003 University of Washington 14

Compare Local and Instance Variables
• Local Variable

» Defined inside a method
» Exists only while the method is being executed
» Can be accessed only from the method
» Is only meaningful during execution of the method
» Contains some intermediate value needed only during execution of the

method; its value is not part of the object’s state

• Instance Variable
» Defined outside any method
» Exists as long as the object exists
» Can be accessed from any method in the class
» Has a meaningful value at any time during the life of the object, whether

the object is actively doing something or not
» Represents a property of the object; its value is part of the object’s state

table from Niño & Hosch

7-July-2003 cse142-07-structure © 2003 University of Washington 15

Document your source code!

• If you write comments as you go along, then
the documents are done when the code is done!
» This will earn you the eternal gratitude of your boss

at work …
• The javadoc tool reads your code and produces

fancy html web pages describing it, based on:
» information from your comments
» information from the structure of the code itself

http://java.sun.com/j2se/1.4/docs/tooldocs/windows/javadoc.html

7-July-2003 cse142-07-structure © 2003 University of Washington 16

Javadoc Tags

• A javadoc comment applies to the element of the
class that follows the comment

• The comment should provide basic information
necessary to use the class, the field, or the method

• The javadoc utility supports several “tag” fields in
javadoc comments
» @param -- passed parameter description
» @return -- returned value description
» @author -- author
» @throws -- possible error conditions

7-July-2003 cse142-07-structure © 2003 University of Washington 17

These comments ...
/**
* This class can be used to represent a member of the CSE 142 Acrobat
* community. In this simple implementation, such people have a name and
* a cumulative action count and they know how to twirl, clap, and count.
* @author Doug Johnson, for CSE 142 Su03
*/
public class Acrobat {
/** the specific name of this person */
private String givenName;
/** the surname or family name of this person */
private String familyName;
/** the cumulative action count for this Acrobat. */
private int actionCount;
/**
* Create a new Acrobat using the name information provided.
* @param given the specific name of this person
* @param family the surname or family name of this person
*/
public Acrobat(String given,String family) {
givenName = given;
familyName = family;
actionCount = 0;
}

7-July-2003 cse142-07-structure © 2003 University of Washington 18

… produce this documentation

