
CSE142 Wi03 O-1

1/10/2003 (c) 2001-3, University of Washington O-1

CSE 142

Searching

1/10/2003 (c) 2001-3, University of Washington O-2

Outline for Today

• Review – sequential (linear) search of a list
• Binary search
• Comparing algorithms

1/10/2003 (c) 2001-3, University of Washington O-3

Searching a List

• For this lecture, assume that we’ve got a list, and some
collection of strings has been added to the list

ArrayList names = new ArrayList();

names.add(“frog”);

names.add(“rabbit”);

names.add(“aardvark”);

• Problem: Look for a name in the list
• If found, report its position
• If not found, report something to indicate “not found”

(Note: normally this would be implemented as a method in some class. For now,
we’ll focus on just the search and ignore surrounding context.)

1/10/2003 (c) 2001-3, University of Washington O-4

Linear Search

• Locate a string in the list
/** Return position of str in the list, or –1 if not present */
public int find(String str) {

}

1/10/2003 (c) 2001-3, University of Washington O-5

Can we do better?

• How much work does linear search do?
• Can we do it faster?

• No, if we don’t know anything about the order of elements in
the list

• Yes, if the list is sorted

1/10/2003 (c) 2001-3, University of Washington O-6

Binary Search – Informal

• Idea
• Look in the middle of the list
• If we haven’t found what we’re looking for, we can ignore half

of the list and look at the other half

• Precondition: The list must be sorted for this to work
• We’ll assume names.get(0) <= names.get(1) <= … <=

names.get(names.size()-1)

CSE142 Wi03 O-2

1/10/2003 (c) 2001-3, University of Washington O-7

Binary Search – Goal

• Goal (more formally)
• Want to find the midpoint of the list such that everything to the

left is <= the string we’re searching for and everything to the
right is >

• Picture:

1/10/2003 (c) 2001-3, University of Washington O-8

Binary Search – Strategy
• On a typical iteration, we have

• Idea:
• Let mid = (L+R)/2
• If names.get(mid) <= str, move L
• If names.get(mid) > str, move R

(Note: In the book, Nino & Hosch use a slightly different invariant. For them,
names.get(low) to names.get(high) is the unexamined region. In these slides,
the unexamined region is names.get(L+1) to names.get(R-1). Either can be
made to work correctly.)

0 L R size()

names <= str ? > str

1/10/2003 (c) 2001-3, University of Washington O-9

String Comparisons

• We need to compare Strings to determine ordering, not
just equality

• Can’t use <, <=, etc. on objects
• Solution: method compareTo in class String

s.compareTo(t)

returns
negative integer if s < t
zero if s == t
positive integer if s > t

1/10/2003 (c) 2001-3, University of Washington O-10

Binary Search – Code
/** Return location of str in the list, or –1 if not present */

public int find(String str) {

while (______________________________) {

}

}

1/10/2003 (c) 2001-3, University of Washington O-11

Binary Search – Test

• Invent some data, try the algorithm

1/10/2003 (c) 2001-3, University of Washington O-12

Binary Search – Test

CSE142 Wi03 O-3

1/10/2003 (c) 2001-3, University of Washington O-13

Binary Search – Performance

• Is the extra complexity worth it?
• How much work is done to search a list of a given size?
• or, How big a list can be searched with n comparisons?

1/10/2003 (c) 2001-3, University of Washington O-14

Binary & Linear Search Compared

• Linear search: work ~ size
• Binary search: work ~ log2 size

• This is a fundamental difference – not just a constant speedup
• But it requires a sorted list

• Graph:

