
5-July-2002 cse142-E-Variables © 2002 University of Washington 1

Variables

CSE 142, Summer 2002
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/02su/

5-July-2002 cse142-E-Variables © 2002 University of Washington 2

Readings and References
• Reading

• Chapter 5, An Introduction to Programming and Object Oriented
Design using Java, by Niño and Hosch

• Chapter 6, Introduction to Programming in Java, Dugan

• Other References

5-July-2002 cse142-E-Variables © 2002 University of Washington 3

Variables
• A variable is

• a portion of memory reserved to hold a single value
• Our program uses little chunks of memory to store the values

that it is working with
• The program refers to each chunk by name, the name of the variable
• When we declare a variable, we give it a name and a type
• Java helps us make sure that we use the variable the way we

intended by enforcing “type checking”

5-July-2002 cse142-E-Variables © 2002 University of Washington 4

class diagram for Donkey

Donkey
consumptionRate : double
currentWeight : double

theName : String

bray(), sleep(), eat(double pounds),
talk(), sing(), hum(), fly(),

getRate() : double, getName() : String

5-July-2002 cse142-E-Variables © 2002 University of Washington 5

Variable declarations
public class Donkey {

/**

* Create a new Donkey.

* @param name name of this Donkey

* @param rate the rate at which this Donkey eats, specified in pounds/fortnight.

* @param weight the initial weight of this Donkey

*/

public Donkey(String name,double rate,double weight) {

theName = name;

consumptionRate = rate;

[…snip…] }

/**

* Eat some goodies. There is some weight gain after eating.

* @param pounds the number of pounds of food provided.

*/

public void eat(double pounds) {

System.out.println(theName+" : Food!");

double coverage = pounds/consumptionRate;

[…snip…] }

//--

/**

* the consumption rate specified for this Donkey. Given in

* pounds per fortnight. A fortnight is two weeks or 14 days.

*/

double consumptionRate;
[…snip…] }

constructor parameter

method parameter

local variable

instance variable

5-July-2002 cse142-E-Variables © 2002 University of Washington 6

Parameter variables
• Parameters are the means by which the caller provides

information to the constructor or method it is calling
• the caller knows that it wants some action to be performed
• it knows that some other object knows how to do this action
• the caller knows a little something about doing the action

how much to eat, how long to sing, what color to make the tree, ...
• The value provided by the caller is passed along in the form of a

parameter
 public void eat(double pounds) {

[…snip…]

}

called with
Donkey pet = new Donkey("Noble Steed");

pet.eat(1); Donkey.java

5-July-2002 cse142-E-Variables © 2002 University of Washington 7

Lifetime of a parameter variable
• When a constructor or method is called, parameter variables

are created for its use during this pass through the code
• The variables are initialized to the values provided by the caller

• The constructor or method can refer to the parameters by
the names it used in the declaration, regardless of what the
caller is using for names

• These automatic variables (copies of the provided value) are
thrown away when the constructor or method returns control
to the caller

5-July-2002 cse142-E-Variables © 2002 University of Washington 8

Local variables
• Local variables are the way that a constructor or method

creates little scratchpad notes to use as it does whatever its
task is

• Local variables are declared within the body of the constructor
or method
• “within the body of the method” means “between the curly braces”

public void sleep {

double nightLength = 8.5;

this area is the body of the method
}

• Local variables can be used exactly as any other variable is
used, but they have a limited lifetime

5-July-2002 cse142-E-Variables © 2002 University of Washington 9

Lifetime of a local variable
• When a constructor or method executes a statement that

declares a local variable, a little chunk of memory is made
available that it can use for the variable
• The variable is not initialized until the method does the initialization

itself
• The constructor or method can refer to the variable

throughout the remainder of the body
• These local variables are thrown away when body of the

method is finished executing
• Next time the method is called, the variables will be allocated fresh
• There is no carryover of value from one execution to the next!

5-July-2002 cse142-E-Variables © 2002 University of Washington 10

Instance variables
• Instance variables are the way an object keeps track of its state

• There is one set of instance variables for each instance of the class
• Each object of the class has its own set of instance variables

• Instance variables are declared outside the body of any
constructor or method (but within the definition of the class)
• “within the definition of the class” means “between the outside pair of curly braces”

public class Donkey {

constructors and methods
double consumptionRate;

}

• Instance variables retain their values as long as the object exists

5-July-2002 cse142-E-Variables © 2002 University of Washington 11

Lifetime of an Instance Variable
• When a new object is created, the Java runtime libraries

allocate a chunk of memory for the object
• the chunk of memory has space in it for each instance variable

• Once the memory is allocated the appropriate constructor is
called to initialize the instance variables
• There is some initialization done by the system, but it is poor form to

rely on that since you can easily overlook a variable that really
should be initialized to some special value

• The programmer is responsible for making sure that the initialization
is done correctly and completely, usually in the constructor

• Instance variables exist from the time an object is created
until the time it is destroyed

5-July-2002 cse142-E-Variables © 2002 University of Washington 12

Compare Local Variable and Instance Variable
• Local Variable

• Defined inside a method
• Exists only while the method is being executed
• Can be accessed only from the method
• Is only meaningful during execution of the method
• Contains some intermediate value needed only during execution of the method; its

value is not part of the object’s state
• Instance Variable

• Defined outside any method
• Exists as long as the object exists
• Can be accessed from any method in the class
• Has a meaningful value at any time during the life of the object, whether the object is

actively doing something or not
• Represents a property of the object; its value is part of the object’s state

table from Niño & Hosch

5-July-2002 cse142-E-Variables © 2002 University of Washington 13

Type checking
• Java helps as much as it can to make sure you use variables

the way you said you were going to when you declared them
• If you said that currentWeight is an int, then Java

will make sure you don’t unintentionally put a double
value in it and lose the fractional part

int currentWeight;

currentWeight = 2;

currentWeight = currentWeight+0.5;

• What should the value of currentWeight be at this point?
• you said it was an integer, why are you adding 0.5 to it?
• the Java compiler decides that this must be a mistake

error: “possible loss of precision”
5-July-2002 cse142-E-Variables © 2002 University of Washington 14

Type casting
• If the compiler thinks you are making a mistake, it will tell you so

currentWeight = currentWeight + (currentWeight*percentGain);

“possible loss of precision. found double, required int”

• If you are really sure that you know it’s okay, you can tell the
compiler not to worry about it
• “I know there’s a possible loss of precision, don’t fret about it.”

• The mechanism for doing this is called casting
• The type you want the value converted to is placed in

parentheses in front of the value or expression to convert
currentWeight = currentWeight+(int)(currentWeight*percentGain);

• The compiler will convert the value to int for you
• beware: loss of precision may be a real problem! SlideE.java

5-July-2002 cse142-E-Variables © 2002 University of Washington 15

void
• Ordinarily we specify the type of object returned by a method

public String getName() {

return theName;

}

• Sometimes we need to specify “nothing is here”
• the keyword void is used when we want to say that nothing

is returned from a method
public void bray() {

System.out.println(theName+" : HeeHaw!");

}

