
3-July-2002 cse142-D2-Methods © 2002 University of Washington 1

Methods

CSE 142, Summer 2002
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/02su/

3-July-2002 cse142-D2-Methods © 2002 University of Washington 2

Readings and References
• Reading (reminder)

• Chapter 5, An Introduction to Programming and Object Oriented
Design using Java, by Niño and Hosch

• Chapter 5, Introduction to Programming in Java, Dugan

• Other References

3-July-2002 cse142-D2-Methods © 2002 University of Washington 3

State and Behavior
• State

• generally held in one or more “instance variables” for the object
• there is a set of instance variables for each object
• For example

If class Person defines height as a property of the class then each object of
this type (each Person object) will have a height variable and an associated
value

• Behavior
• defined by the methods that are implemented for the class
• the same methods are shared by all the objects created from a

particular class template

3-July-2002 cse142-D2-Methods © 2002 University of Washington 4

Dog.java
/**

* Sample class for demonstrating class structure.

*/

public class Dog {

/**

* Create a new Dog. This constructor supplies a default weight of 20 pounds.

* @param rate the rate at which this dog eats, specified in pounds/fortnight.

*/

public Dog(int rate) {

consumptionRate = rate;

weight = 20;

}

/**

* Provide this dog with a voice.

*/

public void bark() {

System.out.println("Woof! Woof!");

}
/**

* Provide this dog with a way to rest his bones.

*/

public void sleep() {

System.out.println("Snrf ... woof ... snrf ...");

}

This is the bark()method of class Dog

3-July-2002 cse142-D2-Methods © 2002 University of Washington 5

Method
• A method is a block of statements that can be invoked to

perform a particular action
• implementing and then calling methods are the way we specify what

an object does
• invoking a method for an object is sometimes called “sending a

message to the object”
• The collection of all the methods defined for a class defines

what objects of that class can do
• For example, if we define methods bark, sleep, eat, and
getRate in the Dog class, then all Dog objects created from that
class can do all those things.

Dog.java

little.bark() big.bark()

little.eat(14)

big.eat(14)

The Dog class

Two objects created
using the Dog class

The Dog class source
file Dog.java

3-July-2002 cse142-D2-Methods © 2002 University of Washington 7

Parameters
• Some methods know how to implement a little bit of behavior

without needing any more information
public void bark() {

System.out.println("Woof! Woof!");
}

• A Dog implemented this way will bark exactly the same way every time this method
is called

• But many methods need to know something additional in
order to actually perform their task

/**
* Eat some goodies. There is some weight gain after eating.
* @param pounds the number of pounds of food provided.
*/
public void eat(int pounds) {

double coverage = (double)pounds/(double)consumptionRate;
…

• We use parameters (arguments) to provide this additional information

3-July-2002 cse142-D2-Methods © 2002 University of Washington 8

Specifying the required parameters

• The method header declares the type and name for each
required parameter

• method eat has one parameter of type int named pounds
/**
* Eat some goodies. There is some weight gain after eating.
* @param pounds the number of pounds of food provided.
*/
public void eat(int pounds) {

double coverage = (double)pounds/(double)consumptionRate;
…

• note that there is a javadoc comment describing the purpose of the parameter

3-July-2002 cse142-D2-Methods © 2002 University of Washington 9

Parameter declaration
• Declaring the parameter in the parameter list is just like

declaring it in the body of the code
• The variable pounds has a type (int) and it can be used in

expressions exactly the way any other variable in the method is
used

• You can declare several parameters in the formal parameter
list of a method
• but try to keep the number down
• if there are too many, the users of this method (you and other

programmers) will have a hard time keeping straight just which
parameter is which

3-July-2002 cse142-D2-Methods © 2002 University of Washington 10

Some examples from class java.lang.String
•toLowerCase()

Converts all of the characters in this String to lower case using the rules of the
default locale

•startsWith(String prefix)

Tests if this string starts with the specified prefix

•substring(int beginIndex, int endIndex)

Returns a new string that is a substring of this string

•regionMatches(int toffset, String other,
int ooffset, int len)

Tests if two string regions are equal

3-July-2002 cse142-D2-Methods © 2002 University of Washington 11

public String substring(int beginIndex, int endIndex) {

if (beginIndex < 0) {

throw new StringIndexOutOfBoundsException(beginIndex);

}

if (endIndex > count) {

throw new StringIndexOutOfBoundsException(endIndex);

}

if (beginIndex > endIndex) {

throw new StringIndexOutOfBoundsException(endIndex-beginIndex);

}

return ((beginIndex == 0) && (endIndex == count)) ? this :

new String(offset+beginIndex, endIndex-beginIndex, value);

}

Parameter variables used in body of method

3-July-2002 cse142-D2-Methods © 2002 University of Washington 12

What about the values of these parameters?
• The values (if any required) must be supplied by the caller

• the compiler checks that the type of the actual values provided
matches the type of the parameters that were specified by the
method and will not compile the code if they are incompatible

rover.bark();

rover.eat(2);

rover.bark();

rover.eat(14);

• The method can vary its behavior in whatever way is
appropriate based on the actual values of the parameters

3-July-2002 cse142-D2-Methods © 2002 University of Washington 13

Supplying an actual value
• The actual values don’t have to be literals like 2 or 14
• You can supply a variable name in the call, and the current

value of the variable will be provided to the method
int currentFoodAmount = 4;

Dog jack = new Dog(2);

jack.eat(currentFoodAmount);

currentFoodAmount = 20;

jack.eat(currentFoodAmount);

• In this example, the method eat executes twice, once with pounds
equal to 4, and then again with pounds equal to 20

• Notice that the method always associates the value with the name
pounds, even though the caller might be using something else

3-July-2002 cse142-D2-Methods © 2002 University of Washington 14

The actual arguments can be expressions
• You can calculate the value to be passed right in the call to the

method if that is appropriate
• Recall: substring(int beginIndex, int endIndex)

int beginIndex = 0;

String myName = “Doug Johnson”;

String twoChar = myName.substring(beginIndex, beginIndex+2);

•twoChar is now a reference to a String containing “Do”

• If necessary and possible, the compiler will convert the value
provided by the caller to the type of the value that was requested
by the method in the formal parameter list

3-July-2002 cse142-D2-Methods © 2002 University of Washington 15

Returning a value to the caller
• A method can also return a value to its caller
• For example, recall the “accessor” methods that allow you to

ask an object what some part of its current state is
public int getX()

public int getWidth()

• The word int in the above examples specifies the type of
value that the method returns

/**
* Get current X value.
* @return the X coordinate
*/
public int getX() {

return x;
} SlideX.java

3-July-2002 cse142-D2-Methods © 2002 University of Washington 16

Documentation for methods
• Short, useful description of the purpose of the method.

• javadoc takes the first sentence of this description and uses it in the
summary part of the documentation page

• If there is important background information on how to use the
method, it should follow the initial sentence.

• All parameters
• use an @param entry for each parameter

• The return value, if any
• use an @return tag if appropriate

• Error exceptions (we will discuss these late in the quarter)
• use a @throws tag if appropriate SlideX.java - generate javadoc

3-July-2002 cse142-D2-Methods © 2002 University of Washington 17

Constructors
• A constructor is used to create a new object of a particular class
• Constructors are special methods that get called with the new

operator
Dog rover = new Dog(10);

• we can’t use the rover.bark() pattern to call the Dog() constructor
because rover doesn’t have a value until after we call the constructor

• The name of a constructor is the same as the name of the class
• in this case Dog(int rate) is a constructor for the class Dog

• You can think of the constructor as a method that initializes
everything according to what the caller has specified, using
whatever default values might be appropriate

3-July-2002 cse142-D2-Methods © 2002 University of Washington 18

Multiple Constructors
• There are often several constructors for any one class
• They all have the same name (the name of the class)
• They must differ in their parameter lists

• the compiler can tell which constructor you mean by looking at the list
of arguments you supply when you call the constructor
Rectangle deadTree;

Rectangle liveTrunk;

deadTree=new Rectangle(150,150,10,50);

liveTrunk=new Rectangle(200,210,10,50,Color.orange,true);

• There is no return value specified for any constructor, because a
constructor always fills in the values in a new object

Cat.java

