
1-July-2002 cse142-D1-Expressions © 2002 University of Washington 1

Expressions

CSE 142, Summer 2002
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/02su/

1-July-2002 cse142-D1-Expressions © 2002 University of Washington 2

Readings and References
• Reading

• Chapter 5, An Introduction to Programming and Object Oriented
Design using Java, by Niño and Hosch

• Chapter 5, Introduction to Programming in Java, Dugan

• Other References
• http://java.sun.com/docs/books/tutorial/java/nutsandbolts/opsummary.html
• http://java.sun.com/j2se/1.4/docs/tooldocs/windows/javadoc.html

1-July-2002 cse142-D1-Expressions © 2002 University of Washington 3

Statements

public class Dog {

public Dog(int rate) {

consumptionRate=rate;

weight = 20;

}

public void bark() { . . . }

public int getRate() { . . . }

public void eat(int pounds) { . . . }

int consumptionRate;

int weight;

}
dog.java

these are the “statements”
that make up the body of
a constructor or method

1-July-2002 cse142-D1-Expressions © 2002 University of Washington 4

Statements
• Most programs need to do a sequence of things. In Java,

we do this by writing a sequence of statements:

int side = 20;
Rectangle aSquare = new Rectangle(side, side, 100, 200);
aSquare.moveBy(35, 10);

• A semicolon terminates a statement. Semicolons in Java
are like the "." (period or full stop) in written English.

• The machine evaluates one statement at a time.
• Statements can be grouped into blocks using curly braces

• { … }

1-July-2002 cse142-D1-Expressions © 2002 University of Washington 5

Expressions
• Expression

• An expression describes how to compute a particular value
• Evaluation of an expression produces a value

• An assignment statement takes a value produced by an
expression and assigns the value to a declared variable in a
program

Double area = PI * radius * radius;

int index = base + increment;

greeting = “hello ” + userName;

1-July-2002 cse142-D1-Expressions © 2002 University of Washington 6

Some Valid Expressions
• a literal representation of a value

7, boolean, “hello”

• the creation of a new object
new AlarmClock(“ringin.wav”)

new Dog(4)

• a name of an object (also called an identifier or variable name)
base, increment

• the result of sending a message to an object
bowser.getRate()

aSquare.getX()

• combinations of expressions are created using operators
PI*radius*radius

MaxValues.java

1-July-2002 cse142-D1-Expressions © 2002 University of Washington 7

Arithmetic Operators
• Java provides arithmetic operators so we can build

mathematical expressions:
• assume y is equal to 11 when the expression is evaluated

1y % 5remainder%
2.2 or 2y / 5divide/

55y * 5multiply*
6y - 5subtract-

16y + 5add+
Value (for y=11)ExampleMeaningSymbol

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/opsummary.html

1-July-2002 cse142-D1-Expressions © 2002 University of Washington 8

Division
• Most of the arithmetic operators work as you would expect

• add, subtract, and multiply
• You have to be a little more careful with division
•double values will act as you expect them to
• 5.0 / 2.0 is equal to 2.5
• But remember that int values are integers and cannot hold any

fractional part
• So what is integer 5 divided by integer 2?

int x = 5;

int y = x / 2;

y will have the value 2 at this point, not 2.5

1.0 + (7 / 8) is equal to what?

1-July-2002 cse142-D1-Expressions © 2002 University of Washington 9

Remainder
• Sometimes you want to know what was left over after an

integer division
• Recall this: value = quotient * divisor + remainder

• Say that you want to know the remainder, not the quotient
• For example
int x = 7;

int y = x / 2;

• y will have the value 3 at this point, but we want to know the
remainder

• The remainder operator is %
int rem = 7 % 2;

rem will have the value 1 at this point since 7-(3*2) is equal to 1

1-July-2002 cse142-D1-Expressions © 2002 University of Washington 10

Binary and Unary Expressions
• We call the above binary operators, because they operate

upon two subexpressions:
<argument expression> <binary operator> <argument expression>
5 * 3

(a+b)*(c/d)

• Most operators are binary operators
• A unary operator operates upon only one subexpression:

<unary operator> <argument expression>

• For example, the "-" symbol can be used as a unary operator
to negate values:

int negX = - x;

1-July-2002 cse142-D1-Expressions © 2002 University of Washington 11

Precedence
• How does this expression get evaluated?

(a+b)*(c/d)

• First (a+b) is evaluated, then (c/d) is evaluated, then the two values
are multiplied together

• How does this expression get evaluated?
a+b*c/d

• First b*c is evaluated, then that value is divided by d, then the result
is added to a

1-July-2002 cse142-D1-Expressions © 2002 University of Washington 12

Precedence
• Java evaluates *, /, and % before + and -

• ie, multiply, divide, and remainder before add and subtract
• these are well defined rules and so the compiler will always know

exactly what to do
• but you or another programmer may not read it exactly the same

way as the compiler does
• Use parentheses unless it’s really really super duper obvious

what the evaluation order is
• They don’t cost a thing, they don’t slow down the program, and if

they save one programmer from misunderstanding the code they
have done a great service!

1-July-2002 cse142-D1-Expressions © 2002 University of Washington 13

Document your source code!
• If you write comments as you go along, then the documents

are done when the code is done!
• This will earn you the eternal gratitude of your boss at work …

• Java provides a very nice tool called javadoc that reads your
code and produces html web pages describing it
• some of the information is from your comments
• some of the information is from the structure of the code itself

• BlueJ invokes the javadoc tool when you use the “interface”
pull down menu item in the source code editor

• http://java.sun.com/j2se/1.4/docs/tooldocs/windows/javadoc.html

1-July-2002 cse142-D1-Expressions © 2002 University of Washington 14

Documenting Source Code
• Java provides several ways to indicate that you are writing a

comment instead of source code
• // - single line comment

• everything after the // is ignored
• /* multiple line comment */

• everything between the /* and */ is ignored, no matter how many lines
it takes

• /** javadoc style comment */
• javadoc expects to find information that it can build a description from
• These comments can be very fancy, but simple comments provide 80

to 90 % of all the information needed

1-July-2002 cse142-D1-Expressions © 2002 University of Washington 15

Javadoc Tags
• A javadoc comment applies to the element of the class that

follows the comment
• The comment should provide basic information necessary to

use the class, the field, or the method
• The javadoc utility supports several “tag” fields in javadoc

comments
• @param -- passed parameter description
• @return -- returned value description
• @author -- author
• @throws -- possible error conditions

1-July-2002 cse142-D1-Expressions © 2002 University of Washington 16

Dog.java
/**

* Sample class for demonstrating class structure.

*/

public class Dog {

/**

* Create a new Dog. This constructor supplies a default weight of 20 pounds.

* @param rate the rate at which this dog eats, specified in pounds/fortnight.

*/

public Dog(int rate) {

consumptionRate = rate;

weight = 20;

}

/**

* Provide this dog with a voice.

*/

public void bark() {

System.out.println("Woof! Woof!");

}

/**

* Provide this dog with a way to rest his bones.

*/

public void sleep() {

System.out.println("Snrf ... woof ... snrf ...");

}

Initial comment describes the
overall purpose of the class.

This comment describes this
particular constructor.

This comment describes this
particular method.

1-July-2002 cse142-D1-Expressions © 2002 University of Washington 17

Dog.java
/**

* Eat some goodies. There is some weight gain after eating.

* @param pounds the number of pounds of food provided.

*/

public void eat(int pounds) {

double coverage = (double)pounds/(double)consumptionRate;

String foodUnits = (pounds == 1) ? "pound" : "pounds";

String timeUnits = (coverage == 1) ? "fortnight" : "fortnights";

System.out.println(

Integer.toString(pounds)+" "+foodUnits+

" lasted "+coverage+" "+timeUnits+".");

weight += (double)pounds/2;

System.out.println("Weight is now "+weight+" pounds.");

}

/**

* Retrieve the rate value for this Dog.

* @return the consumption rate specified for this Dog.

*/

public int getRate() {

return consumptionRate;

}

Note the use of the @param
tag to describe “pounds”

Note the use of the @return tag
to describe the value that this
method returns to its caller

1-July-2002 cse142-D1-Expressions © 2002 University of Washington 18

Dog.java
/**

* Run this guy through his day. This is a simple test harness for this class.

* @param args ignored

*/

public static void main(String[] args) {

Dog rover = new Dog(28);

rover.sleep();

rover.bark();

rover.eat(2);

rover.bark();

rover.eat(14);

}

//--

/** the consumption rate specified for this dog. Given in

* pounds per fortnight. A fortnight is two weeks or 14 days.

*/

int consumptionRate;

/** the weight of this dog. Assumed to be in pounds. */

int weight;

}

You can describe data fields
(variables) also by using
javadoc comments.

