
28-June-2002 cse142-C2-Classes © 2002 University of Washington 1

Classes

CSE 142, Summer 2002
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/02su/

28-June-2002 cse142-C2-Classes © 2002 University of Washington 2

Readings and References
• Reading

• Chapter 3, An Introduction to Programming and Object Oriented
Design using Java, by Niño and Hosch

• BlueJ Tutorial

• Other References

28-June-2002 cse142-C2-Classes © 2002 University of Washington 3

Our Environment

compiler
javac.exe

class definition
source file: Dog.java

class definition
binary file: Dog.class

java virtual machine (JVM)
java.exe

Integrated Development Environment (IDE)
BlueJ.exe / bluej.jar

BlueJ text editor
editor.jar

you and me

output

28-June-2002 cse142-C2-Classes © 2002 University of Washington 4

Us

compiler
javac.exe

class definition
source file: Dog.java

class definition
binary file: Dog.class

java virtual machine (JVM)
java.exe

Integrated Development Environment (IDE)
BlueJ.exe / bluej.jar

BlueJ text editor
editor.jar

you and me

output

the programmer



28-June-2002 cse142-C2-Classes © 2002 University of Washington 5

Integrated Development Environment (IDE)

compiler
javac.exe

class definition
source file: Dog.java

class definition
binary file: Dog.class

java virtual machine (JVM)
java.exe

Integrated Development Environment (IDE)
BlueJ.exe / bluej.jar

BlueJ text editor
editor.jar

you and me

output

our development environment

28-June-2002 cse142-C2-Classes © 2002 University of Washington 6

Java compiler and virtual machine

compiler
javac.exe

class definition
source file: Dog.java

class definition
binary file: Dog.class

java virtual machine (JVM)
java.exe

Integrated Development Environment (IDE)
BlueJ.exe / bluej.jar

BlueJ text editor
editor.jar

you and me

output

Java tools

28-June-2002 cse142-C2-Classes © 2002 University of Washington 7

Source code (we write this)

compiler
javac.exe

class definition
source file: Dog.java

class definition
binary file: Dog.class

java virtual machine (JVM)
java.exe

Integrated Development Environment (IDE)
BlueJ.exe / bluej.jar

BlueJ text editor
editor.jar

you and me

output

source code
28-June-2002 cse142-C2-Classes © 2002 University of Washington 8

Class file (the compiler produces this file)

compiler
javac.exe

class definition
source file: Dog.java

class definition
binary file: Dog.class

java virtual machine (JVM)
java.exe

Integrated Development Environment (IDE)
BlueJ.exe / bluej.jar

BlueJ text editor
editor.jar

you and me

output

binary class definition

The compiler reads our source file
and produces a binary class file.



28-June-2002 cse142-C2-Classes © 2002 University of Washington 9

Running the program (finally!)

compiler
javac.exe

class definition
source file: Dog.java

class definition
binary file: Dog.class

java virtual machine (JVM)
java.exe

Integrated Development Environment (IDE)
BlueJ.exe / bluej.jar

BlueJ text editor
editor.jar

you and me

output

The virtual machine executes the instructions
in the class definition to produce the output from
our program.

28-June-2002 cse142-C2-Classes © 2002 University of Washington 10

What is a Java class?
• A class is a template or blueprint for building objects

• A class is like a dictionary definition, while objects are like things
in the real world that “are” whatever is defined

• A class definition generally resides on disk long term
• the original class definition is written in Java (the .java file) then

translated into a more compact form (the .class file) by the compiler
• the class definition can be used over and over to create more objects,

just like a blueprint can be used over and over to build more houses
• An object resides in memory and is discarded during or at the

end of a program run

28-June-2002 cse142-C2-Classes © 2002 University of Washington 11

Individuals are instances of class “Person”

Person noun an individual human being

class

objects

28-June-2002 cse142-C2-Classes © 2002 University of Washington 12

Houses are instances of blueprints

class

objects

http://vcourses.caup.washington.edu:8900/public/CM599/index.html



28-June-2002 cse142-C2-Classes © 2002 University of Washington 13

Instantiate
• Once we create a class definition using an editor and the

compiler, we can instantiate it with the “new” operator
• to instantiate means to create objects based on the class definition
•Oval moon = new Oval(100,100,20,20,Color.gray,true);

• We can then manipulate these objects to do the work that
needs to be done

• Note that many classes have already been defined for us
• There are 2723 classes defined in the standard Java libraries from

Sun - see the JavaAPI documentation
• There are several classes defined in the UWCSE.jar file - see docs

28-June-2002 cse142-C2-Classes © 2002 University of Washington 14

Example: Committee and Person
• Example: a Committee object is composed of Person objects,

each of which has a vote
• When the Committee has to decide an issue, it “asks” each

of its Person objects to cast its vote
• When we design the Committee class, we will instantiate and

use Person objects to get the work done

28-June-2002 cse142-C2-Classes © 2002 University of Washington 15

Class Concepts
• Class definitions have two important components:

• state
• behavior or interface

• State is expressed using fields in the class definition
• Behavior is expressed using methods
• Together, fields and methods are called class members

28-June-2002 cse142-C2-Classes © 2002 University of Washington 16

Class Concepts:  State
• State is a complete description of all the things that make a

class a class.
• For example, part of the state of class Employee is the

Employee’s UWNetID.  All objects of class Employee will
have a UWNetID specified.

• State is stored in data members
• also known as fields, member variables, instance variables,

properties



28-June-2002 cse142-C2-Classes © 2002 University of Washington 17

Class Concepts:  Behavior
• Behavior of a class defines how other classes may interact

with it.  It indicates the capabilities of the class to “do” things.
• For example, a BaseballPlayer class might define such

behavior as hit, pitch, stealBase, etc.
• Behavior is defined in methods

• Methods look like functions in C, subroutines in Fortran, etc

28-June-2002 cse142-C2-Classes © 2002 University of Washington 18

Class Concepts:  get and set methods
• Part of a class’ behavior is simply to return information about

state
• The convention in Java is to use accessor and mutator

methods to allow other classes to query and (possibly) alter
the state of a class’ objects

• The conventional accessor method is of the form
get<fieldname>.  For example, if a field is named age, the
corresponding accessor method would be getAge().

• Mutator methods are of the form set<fieldname>

28-June-2002 cse142-C2-Classes © 2002 University of Washington 19

Java Class Syntax
• Basic form:
[modifiers] class name { [body] }

• Classes often written like:
class myClass {

// public features

// private features

}

• Be consistent, not religious about structure

28-June-2002 cse142-C2-Classes © 2002 University of Washington 20

Example class

public class Dog {

public Dog(int rate) {

consumptionRate=rate;

weight = 20;

}

public void bark() { . . . }

public int getRate() { . . . }

public void eat(int pounds) { . . . }

private int consumptionRate;

private int weight;

}
dog.java



28-June-2002 cse142-C2-Classes © 2002 University of Washington 21

Tools - BlueJ
• The primary development tool we will use this quarter is a

program called BlueJ
• BlueJ is a simple “Integrated Development Environment” or

IDE
• BlueJ uses the regular Java compiler from Sun to convert

our Dog.java source file into Dog.class class files
• Then we can create new objects (instantiate them) using the

class definition and manipulate them
• BlueJ lets us do slowly and visibly what our code can do very

quickly

28-June-2002 cse142-C2-Classes © 2002 University of Washington 22

Tools - Documentation
• There is a lot to know when programming!

• and there is a lot of information provided to help the programmer
• Your web browser is the key tool for documentation!

• Many people use Internet Explorer, but any modern browser will do
• Spend the time now to find and bookmark the index pages

for each of the key documents that you will need
• JavaAPI - all the standard Java library classes
• UWCSE packages - the CSE library classes for 142/143
• JavaDoc - documentation tags
• JavaSpec - the Java language specification
• references can be found on our software and otherlinks pages

28-June-2002 cse142-C2-Classes © 2002 University of Washington 23

Tools - File System
• It is important that you be able to find the source files that

you write and understand what they are and how they relate
• It’s confusing at first, but it is not magic and you can figure it

out with a little work
• YOU are the programmer, the computer will do what you tell it to
• If you know the language of software development, you can tell the

computer to do lots of interesting things
• Go look at the directories

• find the .java files and the .class files
• understand where BlueJ is putting your files

• The QuickLaunch bar is a handy place to store shortcuts
28-June-2002 cse142-C2-Classes © 2002 University of Washington 24

Tools - UW accounts on Dante
• The University of Washington has a very good set of

systems that provide you with file storage, email,web
publishing, etc

• Know how to back up your files to your account on Dante
• The labs have a shortcut on the desktop for this
• You can log on to Dante directly using SSH Secure Shell

• available from the University for loading on your own machine
• http://www.washington.edu/computing/software/



28-June-2002 cse142-C2-Classes © 2002 University of Washington 25

Appendix

28-June-2002 cse142-C2-Classes © 2002 University of Washington 26

Dog.java
/**

* Sample class for demonstrating class structure.

*/

public class Dog {

/**

* Create a new Dog. This constructor supplies a default weight of 20 pounds.

* @param rate the rate at which this dog eats, specified in pounds/fortnight.

*/

public Dog(int rate) {

consumptionRate = rate;

weight = 20;

}

/**

* Provide this dog with a voice.

*/

public void bark() {

System.out.println("Woof! Woof!");

}

/**

* Provide this dog with a way to rest his bones.

*/

public void sleep() {

System.out.println("Snrf ... woof ... snrf ...");

}

28-June-2002 cse142-C2-Classes © 2002 University of Washington 27

Dog.java
/**

* Eat some goodies. There is some weight gain after eating.

* @param pounds the number of pounds of food provided.

*/

public void eat(int pounds) {

double coverage = (double)pounds/(double)consumptionRate;

String foodUnits = (pounds == 1) ? "pound" : "pounds";

String timeUnits = (coverage == 1) ? "fortnight" : "fortnights";

System.out.println(

Integer.toString(pounds)+" "+foodUnits+

" lasted "+coverage+" "+timeUnits+".");

weight += (double)pounds/2;

System.out.println("Weight is now "+weight+" pounds.");

}

/**

* Retrieve the rate value for this Dog.

* @return the consumption rate specified for this Dog.

*/

public int getRate() {

return consumptionRate;

}

28-June-2002 cse142-C2-Classes © 2002 University of Washington 28

Dog.java
/**

* Run this guy through his day. This is a simple test harness for this class.

* @param args ignored

*/

public static void main(String[] args) {

Dog rover = new Dog(28);

rover.sleep();

rover.bark();

rover.eat(2);

rover.bark();

rover.eat(14);

}

//--------------------------------------------------------------------

/** the consumption rate specified for this dog. Given in

* pounds per fortnight. A fortnight is two weeks or 14 days.

*/

int consumptionRate;

/** the weight of this dog. Assumed to be in pounds. */

int weight;

}


