
26-June-2002 cse142-C1-Objects © 2002 University of Washington 1

Objects

CSE 142, Summer 2002
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/02su/

26-June-2002 cse142-C1-Objects © 2002 University of Washington 2

Readings and References
• Reading

• Chapter 2, An Introduction to Programming and Object Oriented
Design using Java, by Niño and Hosch

• Chapter 4, Introduction to Programming in Java, Dugan

• Other References

26-June-2002 cse142-C1-Objects © 2002 University of Washington 3

Objects
• Objects are the fundamental unit of our programs
• An object has

• State
• Behavior

• The state of an object is described by one or more values
• For example, an object describing a student might contain

values for the following properties
• name, home address, credit hours, UWNetID, course schedule

• The behavior of an object is described by the methods that it
implements

26-June-2002 cse142-C1-Objects © 2002 University of Washington 4

Values
• What types of values are there?

• Lots and lots, gazillions, tons, a hunka values, …

• There are many different values that we deal with every day
• some are simple:

credit hours, price, UWNetID
• some are more complex:

university course, building, tax return
• some are very complex:

graphics window, web site, file system, classroom assignments

26-June-2002 cse142-C1-Objects © 2002 University of Washington 5

Integers
• The simplest set of values are the integers
• The integers are whole numbers

• there is no fractional part in an integer value
• For example: …, -2, -1, 0, 1, 2, … ,100, … 102394, …

• note that it takes more room to store big numbers
• Java provides several types of integers, so that we can use

only the space we need
• Don’t be too worried about saving space, memory is cheap
• We’ll use integers of type int

smallest int = -2,147,483,648
largest int = 2,147, 483,647

26-June-2002 cse142-C1-Objects © 2002 University of Washington 6

Storing values
• The state of the object is described by the set of values that

are assigned to its properties

properties
values

26-June-2002 cse142-C1-Objects © 2002 University of Washington 7

Declaring properties (or variables)
• In order to define a property and give it a value, we have to

declare it
• This gives the property a name and a type so that we can

assign it a value
• The pattern of a declaration is

<the type of thing> <the name> = <the value>;
• An example of this pattern

int width = 10;

int height = 5;

• The object has declared the properties width and height
• The values of those properties are 10 units and 5 units

26-June-2002 cse142-C1-Objects © 2002 University of Washington 8

Declaring a variable

int creditHours = 9;

26-June-2002 cse142-C1-Objects © 2002 University of Washington 9

But not all numbers are integers!
• What is the radius of a circle?

2.75 cm

• How many miles to the gallon does your Honda Accord get?
33.5 miles per gallon

• What is the area of a circle?

• What is the value of π?
π = 3.1415926535...

r?

2RadiusArea ⋅= π

26-June-2002 cse142-C1-Objects © 2002 University of Washington 10

Floating Point Numbers
• Java uses “floating point numbers” to store values that

cannot be represented as ints
• numbers with a fractional part
• very very very large numbers

• 2.75, 33.5, 3.14159, 2.3·10120

• Many numbers like and cannot be represented
exactly in the number system of the computer, and so they
are approximated

3
1

π

3333.0
3
1 ≈ 14159.3≈π

26-June-2002 cse142-C1-Objects © 2002 University of Washington 11

Declaring Floating Point Properties
• Java provides two types of floating point numbers

• float
• double

• We will use type double
• it uses more memory space, but what the heck, memory is cheap

• For example
double radius = 2.75;

double PI = 3.14159;

double area = PI*radius*radius;

26-June-2002 cse142-C1-Objects © 2002 University of Washington 12

But not all values are numbers!

boolean

String

Course

26-June-2002 cse142-C1-Objects © 2002 University of Washington 13

boolean values are true or false
• A boolean variable is appropriate for properties that you

know can be in only one of two logical states
• admitted or not admitted to school
• registered or not registered for the class
• fees paid or not paid
• window hidden or not hidden

• declaration examples
boolean feesPaid = false;

boolean windowHidden = true;

• Notice that it’s not always obvious that a property can only
be true or false under all circumstances

26-June-2002 cse142-C1-Objects © 2002 University of Washington 14

String values
• We often want to store a sequence of characters together
• This is called a “String”
• Declaration pattern example

String name = “Doug Johnson”;

String city = “Langley”;

• Strings are full fledged objects
• They have state

length(), charAt(int index), endsWith(String suffix),…

• They have behavior
concat(String str), compareTo(String anotherString),…

26-June-2002 cse142-C1-Objects © 2002 University of Washington 15

And then the fun begins ...
• What if we want to define and use something that is not one

of the 2723 standard Java classes?
• For example, what exactly is a “Course”?

Course

26-June-2002 cse142-C1-Objects © 2002 University of Washington 16

What is a Course?
• We can model a course any way that we feel is appropriate

for the application we are developing.
• What are the properties?
• What are the behaviors?
• Maybe we don’t expect much of the Course object. We

could just use a String to store the name of the course
String course = “Comp Sci 1583”;

• Maybe we want to store the department name separate from
the course number

String dept = “Comp Sci”;

int number = 1583;

26-June-2002 cse142-C1-Objects © 2002 University of Washington 17

What is a Course?
• What are the fundamental properties of the object that you

need to keep track of?
• Figuring this out is one of the fun parts of software design
• What are the key properties of the object we are designing?

Yes: course content, course textbook, instructor, lecture schedule
Maybe: course location, max student count, student list
Probably not: room facilities, other classes by this instructor

• What are key behaviors?
getTextbook(), getLectureList();
setInstructor(Instructor abc);
addStudent(Student s);
…

26-June-2002 cse142-C1-Objects © 2002 University of Washington 18

A real Course has complex properties
• a room assignment

• the properties of the room are not really properties of the course
itself, so we probably have a different class of objects that are
“Room” descriptions

• an instructor
• the details probably belong in an “Instructor” object

• a set of students
• the details about each student probably belong in a “Student” object

• and so on

26-June-2002 cse142-C1-Objects © 2002 University of Washington 19

We can define our own classes of objects
• The power of Java and other object oriented languages comes

from our ability to define new classes of objects that match the
needs of the application we are writing

• We can define and use our own classes to describe a Course
• then we can declare variables (properties) using those classes

• For example
Instructor teach = new Instructor(“Doug Johnson”);

Room room = new Room(“EE1”, 105);

ArrayList student = new ArrayList();

• We will spend a fair amount of time this quarter talking about
how we define and use these new classes of objects

26-June-2002 cse142-C1-Objects © 2002 University of Washington 20

Shape Objects
• Many graphics-oriented programs manipulate shapes
• Let's create some shapes and windows:

new Triangle()
new Rectangle(200, 50, 100, 10) (left x, top y, width, height)
new GWindow()

• We use the following patterns for creating new objects:
new <type of object>(<optional list of parts or attributes>)

• We usually should give newly created objects a name:
GWindow w = new GWindow();
Rectangle kaneHall =

new Rectangle(50, 150, 250, 200, Color.red, true); (x, y, w, h, color, filled?)
Oval sun = new Oval(200, 50, 35, 35, Color.yellow, true); (x, y, w, h, color, filled?)

26-June-2002 cse142-C1-Objects © 2002 University of Washington 21

Sending Messages
• We get objects to do things, or answer questions, or

calculate results for us, by sending them messages
• Also called invoking a method or (in other languages) calling a

function
• We use the following pattern for sending a message:

<object name> . <message name> (<optional list of parameters>)

• Examples:
sun . getX ()
sun . addTo (w)
sun . moveBy (30, -20)

26-June-2002 cse142-C1-Objects © 2002 University of Washington 22

Drawing a Scene
• To draw a nice picture, first create a window:

GWindow w = new GWindow();

• Then create a shape object, and add it to the window:
Line horizon = new Line(50, 200, 200, 200, Color.green); (x1, y1, x2, y2, color)
horizon.addTo(w);

• Create and add more shapes:
Oval sun = new Oval(100, 175, 35, 25, Color.orange, true); (x, y, w, h, c, f?)
sun.addTo(w);
Rectangle deadTree = new Rectangle(150, 150, 10, 50); (x, y, w, h)
deadTree.addTo(w);
Rectangle tallBuilding = deadTree;

26-June-2002 cse142-C1-Objects © 2002 University of Washington 23

Appendix

26-June-2002 cse142-C1-Objects © 2002 University of Washington 24

Class SimplePicture
import uwcse.graphics.*;

import java.awt.Color;

/**

* This class implements the code given on the last few slides

* of lecture C1.

*

* @author Doug Johnson

*/

public class SimplePicture {

/** the on-screen window we are drawing in */

GWindow frame;

/** the horizon line */

Line horizon;

/** jolly mister sun */

Oval sun;

/** a simple stump */

Rectangle deadTree;

26-June-2002 cse142-C1-Objects © 2002 University of Washington 25

Class SimplePicture
/**

* Construct a simple graphics window with all default characteristics.

*/

public SimplePicture()

{

frame = new GWindow();

horizon = new Line(50, 200, 200, 200, Color.green);

horizon.addTo(frame);

sun = new Oval(100, 175, 35, 25, Color.orange, true);

sun.addTo(frame);

deadTree = new Rectangle(150, 150, 10, 50,Color.gray, true);

deadTree.addTo(frame);

}

/**

* This method moves the sun a little bit.

*/

public void advanceSun()

{

sun.moveBy(2,-5);

}

}

