
24-June-2002 cse142-AB-Introduction © 2002 University of Washington 1

Introduction

CSE 142, Summer 2002
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/02su/

24-June-2002 cse142-AB-Introduction © 2002 University of Washington 2

Why Are We Here?
• Computers are everywhere!

• Big ones serving databases and forecasting the weather
• Medium sized computers on your desk top, for playing games,

writing papers, surfing the internet
• Tiny ones everywhere: cars, microwaves, toys, phones

• They’re part of our world
• What can they do? How do they do it?

• What can you do using a computer program that you’ve
written yourself?

24-June-2002 cse142-AB-Introduction © 2002 University of Washington 3

Two Interesting Facts
1. Computers are multi-purpose

• Unlike cars, toasters, dishwashers
• The same physical computer can play games, solve equations, plan

trips, send e-mail, etc. How is this possible??
• Answer: the computer operates under direction of a “program”: a set

of precise instructions
2. The largest and the smallest computers have much in

common
• We can usefully think of about computers in general without

worrying about hardware details
• This is our first example of “abstraction”, a key notion in computer

science

24-June-2002 cse142-AB-Introduction © 2002 University of Washington 4

Computers & You & CSE142
• You’ll learn to write programs

• We use a particular language called Java
• The principles apply to many other languages

• You’ll use particular computers
• Windows, Mac, Linux, Unix, whatever
• Principles apply to many computers and operating systems

• We’ll talk about the process of software development
• Useful class if you want to understand how computer

systems are developed and how they operate
• programmer, technical user, business user, manager, purchaser, …

24-June-2002 cse142-AB-Introduction © 2002 University of Washington 5

What To Expect
• Course is for beginners
• Programming is quite different from using applications

• Logic/problem solving skills
• Can be challenging, but also very rewarding

• Important to keep up
• Ask for help when you need it; don’t fall behind

• If you have the background to skip this course, you can go directly to
CSE 143
• Automatic credit for CSE 142 after completing CSE 143 successfully

24-June-2002 cse142-AB-Introduction © 2002 University of Washington 6

Readings and References
• Reading

• Chapter 1, An Introduction to Programming and Object Oriented
Design using Java, by Niño and Hosch

• Other References
• All course information is available from the web site:

http://www.cs.washington.edu/education/courses/142/02su/

24-June-2002 cse142-AB-Introduction © 2002 University of Washington 7

Hardware: the physical machine
• Central Processing Unit (CPU)

• Pentium, PowerPC, SPARC, ARM, ...
• Memory / Random Access Memory (RAM)

• main memory
• Hard disk, floppy disk, CDROM

• disk storage
• Monitor, speakers, keyboard, mouse

• input / output (I/O)
• Network connection

• modem or Local Area Network

24-June-2002 cse142-AB-Introduction © 2002 University of Washington 8

Software: the personality
• Software

• the plans that instruct the hardware what to do
• software defines the personality of the system

• Hardware doesn’t do much on its own
• But one set of hardware can do many different things if given the

right instructions
• It is often easier to update software than hardware

24-June-2002 cse142-AB-Introduction © 2002 University of Washington 9

A typical computer organization

main
memory

I/O bus

network
interface

hard
disk

floppy
disk

CDROM
drive

serial
ports

central
processing

unit
(CPU)

processor/memory bus

24-June-2002 cse142-AB-Introduction © 2002 University of Washington 10

Running a program - program load

main
memory

I/O bus

network
interface

hard
disk

floppy
disk

CDROM
drive

serial
ports

CPUprocessor/memory bus

load program into main memory

24-June-2002 cse142-AB-Introduction © 2002 University of Washington 11

Running a program - program execution

main
memory

I/O bus

network
interface

hard
disk

floppy
disk

CDROM
drive

serial
ports

CPUprocessor/memory bus

write data

read instructions
and data

execute the
instructions

24-June-2002 cse142-AB-Introduction © 2002 University of Washington 12

Learning Programming
• Programming is both easier and harder than most people

make it out to be.
• Easier: Many of the things good programmers do well are actually

things all of us already do all the time, we just don't know it.
• Harder: Programming is in large part a skill, even an art

• Programming is like any craft: it requires practice.
• Learning by doing vs. learning by reading about it
• Not sure how something works? Try it and see!
• Build things and throw them away. Experiment!
• Don’t be afraid that you will break the computer.

get a cheap used one ($20) and tear it apart … it’s fun!

24-June-2002 cse142-AB-Introduction © 2002 University of Washington 13

Programming as Communication
• When we write a program, we are communicating with

• the computer
• other people

• The computer reads our program as the set of instructions that it
should perform
• It just needs to know how, not why

• Other people read our programs to understand how and why
• Programs that don't work (bugs)
• Program evolution - new features
• Performance improvement
• Project completion (you never did finish all those features last year …)

24-June-2002 cse142-AB-Introduction © 2002 University of Washington 14

Communicating with Computers and People
• Computers need precision and logical thinking on your part

• Being precise, complete, and logical is one thing that makes
programming hard

• Computers offer speedy, by-the-book results
• What can go wrong with by-the-book results? No “common sense”!

• People can fill in missing steps, but can get swamped by lots
of unorganized details and clutter
• Need to write programs so that can be understood by people, e.g.,

your coworkers, your clients, yourself 3 months from now
• Invent abstractions: new vocabulary, short-hands
• Be organized, use good style

24-June-2002 cse142-AB-Introduction © 2002 University of Washington 15

Example: Giving Directions
• Imagine giving campus directions:

• To another student
• To a tourist
• To a robot

• The student operates at a higher level of abstraction with a
richer vocabulary of short-hands

• An algorithm is a plan for how to accomplish a task
• A program is a software implementation of an algorithm

• Good algorithms (at any level of abstraction) require
precision

24-June-2002 cse142-AB-Introduction © 2002 University of Washington 16

Metaphor: Programs as Directions
• One way to think about programming:

• a program is a sequence of commands that brings about some
action

• telling a robot how to navigate around campus
• telling a human visitor how to get from here to there
• telling a student (a higher form of human) how to get from

here to there

24-June-2002 cse142-AB-Introduction © 2002 University of Washington 17

Metaphor: Programs as Math
• We also can think of programs as executable math:

a program calculates some result for us.
• Consider:

• We can employ such expressions in programs.
• Most of our intuitions and knowledge about mathematics

apply to computers.

2RadiusArea ⋅= π

x = 1:10;
y1 = x.*x;
y2 = 2*(x.*x)+x+1;
y3 = 3*(x.*x);
plot(x,y1,'r')
hold on
plot(x,y2,'g')
plot(x,y3,'b')

Using the program Matlab to calculate and plot function values

24-June-2002 cse142-AB-Introduction © 2002 University of Washington 19

Metaphor: Programs as Simulations
• We also can think of programming as creating or simulating

both real and virtual worlds.
• We can define things in our programs that model the things

in our world. We call these things objects.
• Programs are plastic: they are easy to mold to our wishes

• Can be free of the constraints of real life!
• The limit of plasticity: big programs become as hard to work

with as real-world entities

bird.exe

