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Packages

CSE 142, Summer 2002
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/02su/
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Readings and References

• Reading
» Chapter 14.6, An Introduction to Programming

and Object Oriented Design using Java, by Niño
and Hosch

• Other References
» "Creating and Using Packages", Java tutorial
» http://java.sun.com/docs/books/tutorial/java/interpack/packages.html
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Cohesion and Coupling

• Cohesion describes the degree to which the various
parts of a class all relate to one another in a logical
way - a “cohesive design” is a good thing

• Coupling describes the degree to which different
classes are tied together through implementation
details and assumptions  - a “highly coupled design”
is a bad thing

• Goals:
» Increase cohesion
» Reduce coupling
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Cohesion

• Cohesion looks at classes on a high level
» do one thing well, rather than doing many things poorly

• Examples
» Dog methods - getMealSize(), eat(), toString()
» PetSet methods - speak(), dine()
» not rover.addMeToPetSet(7)
» not theBunch.doAll(3)

• Focus on conceptual task
• Why?

» Easier to understand the class function
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Coupling

• Coupling looks at the ties between classes
» keep it simple and direct - on a “need to know” basis

• Examples
» Dog constructor

Dog(name,serve,weight)

not - Dog(index,displayType,name,birthDate)

» PetSet method
theBunch.add(rover)

not - rover.addMeToPetSet(petNumber,theBunch)

• Why?
» Easier to change your code without ripple effects
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Class design
• Focus each class on a particular logical object

» control the state and behavior of the object using
the methods of the class

• Focus each method on one conceptual task
» name the method to indicate the nature of the task

• Avoid passing control data into the methods
» deciding how to perform is the method’s job

• Avoid method explosion
» Keep number of methods to a manageable number
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Structure of Source File

• Simple structure in order
» package definition

Optional, if missing uses the “default” package.
package hw7;

» package and/or class import statements
Optional, use only as desired for simplicity
import java.util.*;

» Class definition (multiple are allowed but messy)
public class Dog {

…
}
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Structure of Source File (Continued)

Three components to a Java
source file, in order

package package.name;

import java.io.*;
import java.util.ArrayList;

public class MyClass {

// members go here

}

Package identifier

import statements

Class definition
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• Packages are a way to group related classes
» A key part of Java’s encapsulation mechanism
» A class is permanently associated with its package

• Period (.) separated name of the package mirrors
directory structure where classes are stored

• “Default” package is the current directory
» Classes without a package identifier are considered to

be in the default package
» That's why we can ignore package in simple programs

Packages package = directory structureclass java.util.ArrayList is
in directory java\util\
in file rt.jar (files have been
extracted in this example)

jar file has directory structureclass hw7.Location is
in directory hw7\
in file hw7.jar
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• A class’ full name includes its package.
» for example, java.util.ArrayList or java.lang.String

• Often it is more convenient to use the class name
without the package, e.g., ArrayList, String

• The import statement tells the compiler where to
find class definitions that don't have a complete
package name and aren't in the current package
» Classes can be imported individually, or all classes in a

package can be imported
» java.lang.* is imported automatically by the compiler
» is not like #include in C/C++

import statement
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import example

public class Importer {
public Importer() {

names = new java.util.ArrayList( );
names.add("Billy");
names.add("Susan");

}

import java.util.*
public class Importer {

public Importer() {
names = new ArrayList( );
names.add("Billy");
names.add("Susan");

}

or

and
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Compiler Error

G:\cse142\dev\ex142\lect20\Importer.java:10: cannot resolve symbol
symbol : class ArrayList
location: class Importer

names = new ArrayList( );
^

1 error

public class Importer {
public Importer() {

names = new ArrayList( );
names.add("Billy");
names.add("Susan");

}

no import statement

no package name
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Body of the class file

• If more than one class is defined in the source
file, only one of them can be declared public

• source file must have same name as name of
public class

public class PetSet {…} must be in PetSet.java

public class PetSet {
…

}
class Helper {

…
}
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• Encapsulation is the way we, as software
architects, control the way users of our classes
interact with those classes

• Java has features built in to the language that
allow us to hide implementation details
» Public aspects of the implementation are a

commitment for life (method names, variables)
» Hidden parts of an implementation can be changed

without affecting users

Encapsulation
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• There are four levels of access to class
members
» public:  member visible to any class anywhere
» protected:  member visible to classes in same

package, plus subclasses
» package: member visible to classes in same

package
» private:  member visible only within the class

• Keywords match the names above, except
package access, which uses no keyword

Java syntax for encapsulation
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Visibility across package boundaries

public

private

protected

package

class BasicStuff

class FancyStuff
extends BasicStuffclass SimpleStuff

extends BasicStuff

class FooBaz
class BasicBlock

package basic; package fancy;
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package uw.java.course;

public class Test {

public Test() {…}

public void publicMethod() {…}

protected int protectedInt;

String packageString;

private double privateDouble;

}

Access control keywords
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• Use public for most constructors and those
methods that you want others to know
about

• Use private for internal "helper" methods
• Use private for instance variables

» Only in rarest cases should variables be made
public because you may well want to change
their implementation

• Use protected and package (default) only in
very specific cases where needed

Guidelines


