
14-Aug-2002 cse142-20-Packages © 2002 University of Washington 1

Packages

CSE 142, Summer 2002
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/02su/

14-Aug-2002 cse142-20-Packages © 2002 University of Washington 2

Readings and References

• Reading
» Chapter 14.6, An Introduction to Programming

and Object Oriented Design using Java, by Niño
and Hosch

• Other References
» "Creating and Using Packages", Java tutorial
» http://java.sun.com/docs/books/tutorial/java/interpack/packages.html

14-Aug-2002 cse142-20-Packages © 2002 University of Washington 3

Cohesion and Coupling

• Cohesion describes the degree to which the various
parts of a class all relate to one another in a logical
way - a “cohesive design” is a good thing

• Coupling describes the degree to which different
classes are tied together through implementation
details and assumptions - a “highly coupled design”
is a bad thing

• Goals:
» Increase cohesion
» Reduce coupling

14-Aug-2002 cse142-20-Packages © 2002 University of Washington 4

Cohesion

• Cohesion looks at classes on a high level
» do one thing well, rather than doing many things poorly

• Examples
» Dog methods - getMealSize(), eat(), toString()
» PetSet methods - speak(), dine()
» not rover.addMeToPetSet(7)
» not theBunch.doAll(3)

• Focus on conceptual task
• Why?

» Easier to understand the class function

14-Aug-2002 cse142-20-Packages © 2002 University of Washington 5

Coupling

• Coupling looks at the ties between classes
» keep it simple and direct - on a “need to know” basis

• Examples
» Dog constructor

Dog(name,serve,weight)

not - Dog(index,displayType,name,birthDate)

» PetSet method
theBunch.add(rover)

not - rover.addMeToPetSet(petNumber,theBunch)

• Why?
» Easier to change your code without ripple effects

14-Aug-2002 cse142-20-Packages © 2002 University of Washington 6

Class design
• Focus each class on a particular logical object

» control the state and behavior of the object using
the methods of the class

• Focus each method on one conceptual task
» name the method to indicate the nature of the task

• Avoid passing control data into the methods
» deciding how to perform is the method’s job

• Avoid method explosion
» Keep number of methods to a manageable number

14-Aug-2002 cse142-20-Packages © 2002 University of Washington 7

Structure of Source File

• Simple structure in order
» package definition

Optional, if missing uses the “default” package.
package hw7;

» package and/or class import statements
Optional, use only as desired for simplicity
import java.util.*;

» Class definition (multiple are allowed but messy)
public class Dog {

…
}

14-Aug-2002 cse142-20-Packages © 2002 University of Washington 8

Structure of Source File (Continued)

Three components to a Java
source file, in order

package package.name;

import java.io.*;
import java.util.ArrayList;

public class MyClass {

// members go here

}

Package identifier

import statements

Class definition

14-Aug-2002 cse142-20-Packages © 2002 University of Washington 9

• Packages are a way to group related classes
» A key part of Java’s encapsulation mechanism
» A class is permanently associated with its package

• Period (.) separated name of the package mirrors
directory structure where classes are stored

• “Default” package is the current directory
» Classes without a package identifier are considered to

be in the default package
» That's why we can ignore package in simple programs

Packages package = directory structureclass java.util.ArrayList is
in directory java\util\
in file rt.jar (files have been
extracted in this example)

jar file has directory structureclass hw7.Location is
in directory hw7\
in file hw7.jar

14-Aug-2002 cse142-20-Packages © 2002 University of Washington 12

• A class’ full name includes its package.
» for example, java.util.ArrayList or java.lang.String

• Often it is more convenient to use the class name
without the package, e.g., ArrayList, String

• The import statement tells the compiler where to
find class definitions that don't have a complete
package name and aren't in the current package
» Classes can be imported individually, or all classes in a

package can be imported
» java.lang.* is imported automatically by the compiler
» is not like #include in C/C++

import statement

14-Aug-2002 cse142-20-Packages © 2002 University of Washington 13

import example

public class Importer {
public Importer() {

names = new java.util.ArrayList();
names.add("Billy");
names.add("Susan");

}

import java.util.*
public class Importer {

public Importer() {
names = new ArrayList();
names.add("Billy");
names.add("Susan");

}

or

and

14-Aug-2002 cse142-20-Packages © 2002 University of Washington 14

Compiler Error

G:\cse142\dev\ex142\lect20\Importer.java:10: cannot resolve symbol
symbol : class ArrayList
location: class Importer

names = new ArrayList();
^

1 error

public class Importer {
public Importer() {

names = new ArrayList();
names.add("Billy");
names.add("Susan");

}

no import statement

no package name

14-Aug-2002 cse142-20-Packages © 2002 University of Washington 15

Body of the class file

• If more than one class is defined in the source
file, only one of them can be declared public

• source file must have same name as name of
public class

public class PetSet {…} must be in PetSet.java

public class PetSet {
…

}
class Helper {

…
}

14-Aug-2002 cse142-20-Packages © 2002 University of Washington 16

• Encapsulation is the way we, as software
architects, control the way users of our classes
interact with those classes

• Java has features built in to the language that
allow us to hide implementation details
» Public aspects of the implementation are a

commitment for life (method names, variables)
» Hidden parts of an implementation can be changed

without affecting users

Encapsulation

14-Aug-2002 cse142-20-Packages © 2002 University of Washington 17

• There are four levels of access to class
members
» public: member visible to any class anywhere
» protected: member visible to classes in same

package, plus subclasses
» package: member visible to classes in same

package
» private: member visible only within the class

• Keywords match the names above, except
package access, which uses no keyword

Java syntax for encapsulation

14-Aug-2002 cse142-20-Packages © 2002 University of Washington 18

Visibility across package boundaries

public

private

protected

package

class BasicStuff

class FancyStuff
extends BasicStuffclass SimpleStuff

extends BasicStuff

class FooBaz
class BasicBlock

package basic; package fancy;

14-Aug-2002 cse142-20-Packages © 2002 University of Washington 19

package uw.java.course;

public class Test {

public Test() {…}

public void publicMethod() {…}

protected int protectedInt;

String packageString;

private double privateDouble;

}

Access control keywords

14-Aug-2002 cse142-20-Packages © 2002 University of Washington 20

• Use public for most constructors and those
methods that you want others to know
about

• Use private for internal "helper" methods
• Use private for instance variables

» Only in rarest cases should variables be made
public because you may well want to change
their implementation

• Use protected and package (default) only in
very specific cases where needed

Guidelines

