
12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 1

Exceptions

CSE 142, Summer 2002
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/02su/

12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 2

Readings and References

• Reading
» Chapter 18, An Introduction to Programming and

Object Oriented Design using Java, by Niño and
Hosch

» Chapter 21, Introduction to Programming in Java,
Dugan

• Other References
» "Handling Errors with Exceptions", Java tutorial
» http://java.sun.com/docs/books/tutorial/essential/exceptions/index.html

12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 3

Exceptions

• In the old days, error conditions were usually
handled with returned error codes

• If function really returns a value, can have
problems distinguishing between error
condition and legitimate value
» which value will never, ever occur normally?

• Exceptions provide a much more elegant way
to deal with error conditions!

12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 4

Exceptional Conditions

• An “exceptional condition” is a problem that
prevents the continuation of the method or
scope that you’re in

• You can’t continue because the current context
doesn’t have enough information to solve the
problem then and there

• There is no definite rule about what’s an
exceptional condition and what is not.  Use
common sense!



12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 5

Define common sense: return value, ...

• If the problem is something that might happen
quite often in perfectly good code, then a
distinguished return value might suffice
» BufferedReader readLine() returns a String

containing the contents of the line or returns null
if the end of the stream has been reached

» ArrayList indexOf(Object elem) returns the
index of the first occurrence of the argument in the
list or returns -1 if the object is not found

12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 6

…, checked exception, ...
• If the problem is something that might happen

from time to time (but not often) in well written
code, you can use a checked exception
» the compiler checks that all checked exceptions are

caught by error handling code somewhere
» FileReader(File f) throws FileNotFoundException if

the specified file is not found
» InetAddress getByName(String host) throws

UnknownHostException if no IP address for the host
could be found

12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 7

…, runtime exception, ...

• If the problem will not happen in well written
code, then you don't need to check for it
» subclasses of RuntimeException
» ArithmeticException (eg, divide by zero)
» NullPointerException (eg, try to access an

object method with a null reference)
» IndexOutOfBoundsException (eg, attempt to

access an array element with an index that is too
large or too small)

12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 8

…, fatal error.

• Some problems are so bad that the program
just has to give up entirely
» NoClassDefFoundError - Thrown when JVM

tries to load in the definition of a class but no
definition of the class can be found

» NoSuchMethodError - Thrown if an application
tries to call a specified method of a class and that
class no longer has a definition of that method.
This error can only occur at run time if the
definition of a class has incompatibly changed.



12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 9

So, common sense is:
• return value

» you expect this event to occur
• checked exception

» it might occur and you know what to do
• runtime exception

» it might occur, but it's a bug, so the program
should exit as gracefully as it can

• error
» we are in deep trouble, and the JVM should

terminate the program immediately
12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 10

When to Use Exceptions

• Exceptions are meant for “unexpected error conditions”.
• Exceptions are not meant for “simple, expected

situations”
• Deciding which situations are expected and which are

not is a fuzzy area.  If the user is involved, expect the
unexpected...

• Do not use exceptions as a way to report expected
situations.  They cost more in execution time than a
simple if (condition) check.

12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 11

Generating Exceptions

• All exceptions are generated by constructors and
methods

• A constructor or method declares in its signature
which checked exceptions it might “throw”

• Any method might throw a RuntimeException or
Error, regardless of its signature.

public BusReader(String host,int port) throws IOException {
Socket s = new Socket(host,port);
InputStream in = s.getInputStream();
textReader = new BufferedReader(new InputStreamReader(in));

}

from BusReader.java

12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 12

Handling Exceptions

• So, you can tell from looking at the javadoc API (or
other class documentation that shows method
signatures) whether you need to worry about handling
exceptions.

• To handle exceptions, enclose the method invocation
in a try/catch block.

try {
… risky business …
}
catch (IOException e) {
… fix it up …
}



12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 13

Example

try {
if (arg.length == 2 && arg[0].toLowerCase().equals("file")) {

source = new BusReader(arg[1]);
} else if (arg.length == 3 && arg[0].toLowerCase().equals("net")) {

int port = Integer.parseInt(arg[2]);
source = new BusReader(arg[1],port);

} else {
System.out.println(usage);

}
}
catch (IOException e) {

System.out.println(e);
}
catch (NumberFormatException e) {

System.out.println(e);
}

from BusDisplay.java

12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 14

finally block

• What if there is some code we want to execute
whether or not there are problems?

• Use a finally block after the last catch block
try {
… risky business …
}
catch (IOException e) {
… fix it up …
}
finally {
… always do this …
}

12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 15

• What should be done in an exception handler?
» Unwind any partially executed state
» eg, if first of two files is open but second failed,

close the first one
» eg, if an ArrayList is allocated, but the mandatory

first entry failed, set the list reference to null
• Details depend on the application.

» A dialog box (warning/error)
» Write a message to a log that an operation failed
» Invoke method System.exit()
» Sometimes (rarely), do nothing

We've caught it, now what?

12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 16

• If it is not appropriate for your method to handle
an exception, simply let it flow upward by adding
a throws to your method’s signature

• At some point above you in the calling sequence,
the exception will be caught

Handling Exceptions

public void myMethod() throws AnException {
aMethod();

}



12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 17

• What if there are multiple exceptions that could be
thrown within a try{} block?
» Each exception will need a catch{} that can handle it.

• The VM will go through the list of catch{} blocks for
the try{}, and will use the first one that catches the
same type of Exception that has been thrown.

• If you don’t provide an appropriate catch{} for each
exception that can be thrown or specify that you might
throw the exception yourself, you will get a compile
error.

What if several Exceptions are possible?

12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 18

• You are not required to catch the exact Exception
subclass that is thrown.  You can also catch any
superclass of the one that is thrown.

• So, for example
» if FileNotFoundException extends IOException
» and FileNotFoundException is thrown
» it is permissible to catch either FileNotFoundException or

IOException.

• It is usually advisable to be as specific as you can in
what you catch.  This encourages more appropriate
error handling.

Catching a superclass is okay

12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 19

Try / Catch Summary
• Execution enters a try{} block
• If an exception is thrown, execution jumps

immediately to the appropriate catch{} block
• If an exception is not thrown, execution

proceeds through the try{} block, then skips
all the catch {} blocks

• In either case (exception or not), when
execution exits the try{} block, it proceeds to a
finally{} block if there is one.

ExceptionExample.java

12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 20

Exceptions are objects

• Exceptions in Java are (not surprisingly) defined
in classes

• All such classes inherit from java.lang.Throwable



12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 21

java.lang.Exception

• Runtime errors that are usually recoverable
» It’s common to define new ones

• Must be handled or code will not compile,
except for instances of RuntimeException
» RuntimeExceptions are like Errors, in that the

problem is usually fundamental and potentially
serious.

» It is possible to catch RuntimeExceptions, but
not generally a good idea.  Fix the bug instead!

12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 22

java.lang.Error

• Reserved for fundamental, usually serious
problems at the VM level

• Should not be caught--they can occur
anywhere, so trying to handle them is
impractical.
» Usually they are fatal anyway

• For example: OutOfMemoryError,
ClassFormatError, NoClassDefFoundError

• It is very rare to define new Error subclasses

12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 23

java.lang.Throwable

• In a catch(Exception e){}, you are passed
an instance of the Exception thrown.  You can
use this object in your handler code.

• Throwable defines several useful methods:
» getMessage() returns an appropriate message as a

String
» printStackTrace() dumps the series of method

calls on the call stack

12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 24

• In classes you design, there will be occasions
when it is appropriate for you to throw
Exceptions.

• You can throw Exceptions defined in the Core
API, or you can create your own.

if (bad_news) {
throw new FrammisException("Unexpected frammis index: "+i);

} else {
// continue with business of your method

}

Throwing Exceptions



12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 25

• Exceptions are classes just like all other classes.
The same rules apply for defining them, and the
same OO principles that apply to other classes
you design apply to Exceptions as well.

• By convention, class Throwable and its
subclasses have two constructors
» one that takes no arguments
» one that takes a String argument that can be used to

produce an error message.

Defining New Exceptions

12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 26

public class FrammisException extends Exception {
public FrammisException() {

super();
}
public FrammisException(String s) {

super(s);
}

}

Defining new Exception classes

12-Aug-2002 cse142-19-Exceptions © 2002 University of Washington 27

• Try to give Exceptions names that make
sense.  Think of situations in which the
following Exceptions might be thrown:
» FileNotFoundException
» MalformedURLException
» StringIndexOutOfBoundsException
» NegativeArraySizeException

Naming the new Exception


