
7-Aug-2002 cse142-17-IO © 2002 University of Washington 1

Input and Output

CSE 142, Summer 2002
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/02su/

7-Aug-2002 cse142-17-IO © 2002 University of Washington 2

Readings and References

• Reading
» Section A.2, An Introduction to Programming and

Object Oriented Design using Java, by Niño and
Hosch

» Chapter 5 (end of chapter), Introduction to
Programming in Java, Dugan

• Other References
» Section "I/O" of the Java tutorial
» http://java.sun.com/docs/books/tutorial/essential/io/index.html

7-Aug-2002 cse142-17-IO © 2002 University of Washington 3

Input & Output

• Most programs perform both input and output
» Think about a video game with no display
» Or an ATM that doesn't let you enter your PIN!

or worse yet, doesn't give you any money ...

• Output can go to a variety of places:
» the screen, speakers, disk, network, printer…

• Input can come from a variety of places:
» the mouse, keyboard, disk, network…

7-Aug-2002 cse142-17-IO © 2002 University of Washington 4

"Streams" are the basic I/O objects

keyboard,
disk file,
network,
etc

display,
disk file,
network,
etc

from Sun tutorial on I/O

7-Aug-2002 cse142-17-IO © 2002 University of Washington 5

The stream model

• The stream model views all data as coming
from a source and going to a sink

Source SinkStream

7-Aug-2002 cse142-17-IO © 2002 University of Washington 6

Sources and Sinks - Console

• When reading from the console
» the keyboard is the source
» a data structure in your application is the sink

• When writing to the console
» a data structure in your application is the source
» the monitor (terminal window) is the sink

• Sources and sinks can be files, memory, the
console, network ports, serial ports, etc

7-Aug-2002 cse142-17-IO © 2002 University of Washington 7

Sources and Sinks - Files

• When reading from a file
» the file is the source
» a data structure in your application is the sink

• When writing to a file
» a data structure in your application is the source
» the file is the sink

• Sources and sinks can be files, memory, the
console, network ports, serial ports, etc

7-Aug-2002 cse142-17-IO © 2002 University of Washington 8

Streams

• Getting data from source to sink is the job of
a stream

• Use different streams for doing different jobs
• Streams appear in many packages

» java.io - basic stream functionality, files
» java.net - network sockets
» javax.comm - serial ports
» java.util.zip - zip files

7-Aug-2002 cse142-17-IO © 2002 University of Washington 9

Streams are layered classes

• Inheritance and composition both play key
roles in defining the various types of streams

• Each layer adds a little bit of functionality
• The nice thing about this design is that many

programs don't need to know exactly what
kind of stream they are working with
» one OutputStream is as good as another in many

situations, as long as it knows how to move bytes

7-Aug-2002 cse142-17-IO © 2002 University of Washington 10

OutputStream

• An OutputStream sends bytes to a sink
» OutputStream is an abstract class
» the actual "write" method depends on the device

being written to
• Key methods:

abstract void write() throws IOException

void write(byte[] b) throws IOException

void close() throws IOException

7-Aug-2002 cse142-17-IO © 2002 University of Washington 11

OutputStream subclasses

• Subclasses differ in how they implement write()
and in what kind of sink they deal with:
» FileOutputStream: sink is a file on disk
» FilterOutputStream: process the stream in transit

• There are many more subclasses
» ObjectOutputStream: primitives and objects to a sink
» ByteArrayOutputStream: sink is an array of bytes
» PipedOutputStream: sink is a pipe to another thread

7-Aug-2002 cse142-17-IO © 2002 University of Washington 12

FilterOutputStream

• Constructor takes an instance of OutputStream
• Resulting object is also instance of OutputStream
• These classes decorate the basic OutputStream

implementations with extra functionality
• Subclasses in java.io:

» PrintStream: supports display of data (in text form)
» BufferedOutputStream: adds buffering for efficiency
» DataOutputStream: supports writing primitive data types

and Strings (in binary form)

7-Aug-2002 cse142-17-IO © 2002 University of Washington 13

Writing output to the console

• Java provides standard PrintStream System.out
» has methods to print text to the console window

• Some operations:
System.out.println(<expression>);
System.out.print(<expression>);

• expression can be
» primitive type: an int, double, char, boolean
» or an object of any class type

7-Aug-2002 cse142-17-IO © 2002 University of Washington 14

Printing primitives on System.out

• System.out is a PrintStream object
• PrintStream defines a whole bunch of print(…)

methods, one for each type
void print(boolean b)
void print(char c)
void print(char[] s)
void print(double d)
void print(float f)
void print(int i)
void print(long l)

void print(Object obj)
void print(String s)

7-Aug-2002 cse142-17-IO © 2002 University of Washington 15

Printing objects on System.out

• Any object can be printed on System.out
Rectangle rect = new

Rectangle(30,50,100,150,Color.blue,true);
System.out.println(rect);

• Can be very useful for debugging
» Put System.out.print or println method calls in

your code to display a message when that place is
reached during execution

» Particularly useful if the string version of the
object has useful information in a readable format

7-Aug-2002 cse142-17-IO © 2002 University of Washington 16

Object Representation on System.out

• What actually happens when an object is printed?
» The toString() method belonging to the object

provides the string to be printed
» All classes have a default toString(), the one defined

by the Object class (not very descriptive)

» But you can provide a custom version of toString() in
any of your classes very easily

public String toString() {
return getClass().getName()+"@"+Integer.toHexString(hashCode());
}

7-Aug-2002 cse142-17-IO © 2002 University of Washington 17

toString() in Vehicle & LocatedVehicle

/**
* Provide a String representation of this LocatedVehicle.
* @return a String describing this LocatedVehicle
*/
public String toString() {

return super.toString()+" at "+location.toString();
}

/**
* Provide a String representation of this Vehicle.
* @return a String describing this Vehicle
*/
public String toString() {

return this.getClass().getName()+" "+vin;
}

7-Aug-2002 cse142-17-IO © 2002 University of Washington 18

InputStream
• An InputStream gets bytes from a source

» InputStream is an abstract class
» The actual "read" method depends on the source

being read from
» Key methods:

abstract int read() throws IOException

int read(byte[] b) throws IOException

void close() throws IOException

7-Aug-2002 cse142-17-IO © 2002 University of Washington 19

InputStream subclasses

• Subclasses differ in how they implement read()
and in what kind of source they deal with:
» FilterInputStream: process the stream in transit
» FileInputStream: source is a file on disk

• There are many more subclasses
» ByteArrayInputStream: source is an array of byte
» PipedInputStream: source is pipe from another thread
» ObjectInputStream: primitives and objects from a

source

7-Aug-2002 cse142-17-IO © 2002 University of Washington 20

FilterInputStream

• Constructor takes an instance of InputStream
• Resulting object is also instance of InputStream
• These classes “decorate” the basic InputStream

implementations with extra functionality
• Some useful subclasses

» BufferedInputStream: adds buffering for efficiency
» ObjectInputStream: read primitive data types and objects
» ZipInputStream: read zip files

7-Aug-2002 cse142-17-IO © 2002 University of Washington 21

Reader and Writer

• Reader and Writer are abstract classes that are
Unicode aware and can use a specified
encoding to translate Unicode to/from bytes

• Subclasses implement most functionality
» InputStreamReader, OutputStreamWriter
» StringReader, StringWriter
» PipedReader, PipedWriter
» BufferedReader, BufferedWriter

7-Aug-2002 cse142-17-IO © 2002 University of Washington 22

Reader and Writer guidelines

• In general:
» If you’re working with text (Strings and chars),

use Reader and Writer
» If you’re working with primitive data types, use

InputStream and OutputStream
» If you get an InputStream or OutputStream from

somewhere else, you can convert to
Reader/Writer if needed

7-Aug-2002 cse142-17-IO © 2002 University of Washington 23

System.in, System.out

• System.in is a predefined InputStream
• You can convert to a Reader like this:

Reader r = new InputStreamReader(System.in));

• System.out is a predefined OutputStream
• You can convert to a Writer like this:

Writer w = new OutputStreamWriter(System.out));

7-Aug-2002 cse142-17-IO © 2002 University of Washington 24

Read a String from the console

/* ask for the names we were not given */

BufferedReader console =
new BufferedReader(new InputStreamReader(System.in));

for (int i=count; i<3; i++) {
System.out.print("name "+i+"? ");
String petName = console.readLine();
if (petName == null) {

petName = "<blank>";
}
names.add(petName);

}

this is from PetSetB.java, ex142\lect12

