
5-Aug-2002 cse142-16-Arrays © 2002 University of Washington 1

Arrays

CSE 142, Summer 2002
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/02su/

5-Aug-2002 cse142-16-Arrays © 2002 University of Washington 2

Readings and References

• Reading
» Section 22.1, An Introduction to Programming

and Object Oriented Design using Java, by Niño
and Hosch

» Chapters 18 and 19, Introduction to Programming
in Java, Dugan

• Other References
» Section Arrays of the Java tutorial
» http://java.sun.com/docs/books/tutorial/java/data/arrays.html

5-Aug-2002 cse142-16-Arrays © 2002 University of Washington 3

Arrays

• Java (and many other languages) include
arrays as the most basic kind of collection.
» Simple, ordered collections, similar to ArrayLists.
» Special syntax for declaring values of array type.
» Special syntax for accessing elements by position.

• Unlike ArrayLists:
» The size is fixed when the array is created.
» Can specify the type of the elements of arrays.

5-Aug-2002 cse142-16-Arrays © 2002 University of Washington 4

Array Example
public class ArraySample {

public ArraySample() {

names = new String[3];

names[0] = "Sally";

names[1] = "Splat";

names[2] = "Google";

for (int i=0; i<names.length; i++) {

System.out.println("Name "+i+" is "+names[i]);

}

}

String[] names;

}

5-Aug-2002 cse142-16-Arrays © 2002 University of Washington 5

Array Example
ArrayExample

names

String[]

index 0

index 1

index 2

String
"Sally"

String
"Splat"

String
"Google"

length : 3

5-Aug-2002 cse142-16-Arrays © 2002 University of Washington 6

Java Array Object

• Arrays are objects! They...
» Must be instantiated with new unless immediately

initialized
» Can contain Object references or primitive types

» Have class members (length, clone(),…)
» Have zero-based indexes
» Throw an exception if bounds are exceeded

5-Aug-2002 cse142-16-Arrays © 2002 University of Washington 7

Array Declaration and Creation

• Array have special type and syntax:
<element type>[] <array name> = new <element type> [<length>];

• Arrays can only hold elements of the specified type.
» Unlike ArrayList, element type can be int, double, etc.
» type can be Object, in which case very similar to ArrayList

• <length> is any positive integer expression
• Elements of newly created arrays are initialized

» but generally you should provide explicit initialization

• Arrays have an instance variable that stores the length
<array name>.length

5-Aug-2002 cse142-16-Arrays © 2002 University of Washington 8

Declaring and Allocating Arrays

• Declare an Array of ten String references
String[] myArray = new String[10];

• Declare an array and initialize elements
» the compiler counts the number of elements in this case
String[] myArray = { “Java”,”is”,”cool”};

• Declare, initialize, and use an array
» this is an "anonymous" array
boolean okay = doLimitCheck(x,new int[] {1,100});

5-Aug-2002 cse142-16-Arrays © 2002 University of Washington 9

Array Element Access

• Access an array element using the array name
and position: <array name> [<position>]

• Details:
» <position> is an integer expression.
» Positions count from zero, as with ArrayLists.
» Type of result is the element type of the array

• Can update an array element by assigning to it:
<array name> [<position>] = <new element value> ;

» Like ArrayList's set method

5-Aug-2002 cse142-16-Arrays © 2002 University of Washington 10

Looping Over Array Contents

• The length attribute makes looping over
Array objects easy:

for (index=0; index<myArray.length; index++) {
System.out.println(myArray[index]);

}

• The length attribute is a read-only value
» You can't change the size of the array after it

has been created

5-Aug-2002 cse142-16-Arrays © 2002 University of Washington 11

Passing Array Objects to Methods

• You must declare that a method parameter is an
Array:
public static void main(String[] args)

• Arrays are objects and so you are passing a
reference when you call a method with an array
» This means array contents can be changed by methods
» This may be what you want, but if not, you need to

make sure that other methods only get a copy of your
array and the elements in it

5-Aug-2002 cse142-16-Arrays © 2002 University of Washington 12

Array Summary

• Arrays are the fundamental low-level collection
type built in to the Java language.
» Also found in essentially all programming languages

• Size fixed when created
• Indexed access to elements
• Used to implement higher-level, richer container

types
» ArrayList for example
» More convenient, less error-prone for users

5-Aug-2002 cse142-16-Arrays © 2002 University of Washington 13

The Arrays Class

• There is also a class called java.util.Arrays
» Note the capital A, this is a class name
» part of package java.util
» utility functions for using arrays

search
sort
initialize

» These are static methods so they exist and can be
used without creating an object first

5-Aug-2002 cse142-16-Arrays © 2002 University of Washington 14

The Collections Class

• There is also a class called java.util.Collections
» utility functions for using classes that implement the

Collection interface
» This class consists exclusively of static methods that

operate on or return collections. It contains
polymorphic algorithms that operate on collections,
"wrappers", which return a new collection backed by
a specified collection, and a few other odds and ends.

» These are static methods so they exist and can be
used without creating an object first

5-Aug-2002 cse142-16-Arrays © 2002 University of Washington 15

Useful methods in Collections class

• static void sort(List list)
» Sorts the specified list into ascending order,

according to the natural ordering of its elements.
» "natural order" is defined when you implement the

interface Comparable
• static void sort(List list, Comparator c)

» Sorts the specified list according to the order induced
by the specified comparator

» Comparator lets you define several different orders

