Abstract classes

CSE 142, Summer 2002

Computer Programming 1

http://www.cs.washington.edu/education/courses/142/02su/

31-July-2002 cse142-15-Abstract © 2002 University of Washington

Readings and References

* Reading

» Chapter 15, An Introduction to Programming and
Object Oriented Design using Java, by Nino and
Hosch

e Other References

» Sections Object-Oriented Programming Concepts
and Classes and Inheritance of the Java tutorial

» http://java.sun.com/docs/books/tutorial/java/

31-July-2002 cse142-15-Abstract © 2002 University of Washington

Good design characteristics

* Design strategy
» Figure out the fundamental elements of a problem

» Design your solution to model those key elements

* A good design will be

» robust - 1t doesn’t need major changes to adapt to
small changes in the problem statement

» long-lived - 1t can be adapted easily over time, and
so 1t lives beyond the 1nitial problem itself

31-July-2002 cse142-15-Abstract © 2002 University of Washington

Abstraction 1s the key to good design

* What are the fundamental elements of a problem?

* Those aspects of the problem that appear over
and over 1n different problem statements

» A scheduling problem
what are the fundamental things being scheduled?

what are the common state and behavior of scheduled things?

» An mnventory problem
what are the elements actually being tracked?

what are the common state and behavior of inventoried items?

31-July-2002 cse142-15-Abstract © 2002 University of Washington 4

Inheritance

 Inheritance gives us a way to let a superclass
(or base class) implement state and behavior
that 1s common to a group of subclasses

* The subclasses differ in some way from the
superclass and from each other, and yet they
share some characteristics

e So we have the notion of common or shared
characteristics and unique or non-shared
characteristics

31-July-2002 cse142-15-Abstract © 2002 University of Washington

Interfaces

* An interface 1s a tool for defining the behavior
that all implementing classes will have

» 1t names the methods that a class must have if the
class claims to implement the interface

» the interface definition 1s a good tool for
1dentifying what must be implemented

» the interface does not provide the programmer
with any help 1n actually implementing the
methods!

31-July-2002 cse142-15-Abstract © 2002 University of Washington

The Shape interface

* Here are the methods 1n the Shape interface

void addTo (GWindow gw) InternalGWindow currentWindow ()

Rectangle getBoundingBox () boolean intersects (Shape other)

int getCenterX() void moveBy (int deltaX, int deltaY)

int getCenterY () void moveTo (int x, int y)

java.awt.Color getColor () void paint(java.awt.Graphics g)

int getHeight () void recordWindow (InternalGWindow gw)

int getWidth() void removeFromWindow ()

int getX() void rotateAround(int pX,int pY,double d)
int getY () void setColor(java.awt.Color c)

Do we have to start from scratch when we want to implement a new class like
Triangle that implements Shape?

31-July-2002 cse142-15-Abstract © 2002 University of Washington 7

Recall the syntax of inheritance

* Specify inheritance relationship using extends

public class Triangle extends PolyShape {

public abstract class PolyShape extends ShapeImpl {
private int npoints;

public abstract class ShapeImpl implements Shape {
protected Rectangle boundingBox;

public int getX() {
return boundingBox.getX() ;
}

31-July-2002 cse142-15-Abstract © 2002 University of Washington

Constructor Summary

Triangle)
Create a new blue, filled tnangle with default postion and size.

Triangle (int =1, int w1, int =2, int vZ, int x3, int ¥3)
Create a new black, unfilled tnangle between the miven three vertices

Triangle (int =1, int v1, int =2, int v2Z, int x3, int ¥3,
Java.awt.Color <, boolean f£i1l1)
Create a new tnangle of the gmiven color and filledness between the given three vertices

Method Summary

java.lang.String |toString ()
Anszwer the printed representation of this shape.

MIethods inherited from class wwese.graphics. PolyShape

addPoint, moveTo, palint, resize, rotatehAround

MIethods inherited from class wwese.graphics.Shapelmpl

addTo, currentWindow, getBoundingBox, getCenteri, getCenter¥, getColor,
getHeight, getWidth, geti, get¥, intersects, moveByv, recordWindow,
removeFromWindow, =zetColor

MMethods inherited from class java.lang.Ohject

equals, getClass, hashCode, notify, notifyall, walt, walt, walt

ssefjavadocs/graphicsfuwcse/graphics) Triangle. html#method_surmmary j I 100%:

The List interface

void add(int index, Object element)
boolean add (Object o)

boolean addAll (Collection c)
boolean addAll (int index,

void clear ()

Collection c)

boolean contains (Object o)
boolean containsAll (Collection c)
boolean equals (Object o)

Object get(int index)

int hashCode ()

int indexOf (Object o)

boolean isEmpty ()

Iterator iterator ()

int lastIndexOf (Object o)
ListIterator listIterator()
ListIterator listIterator (int index)
Object remove (int index)

boolean remove (Object o)

boolean removeAll (Collection c)
boolean retainAll (Collection c)
Object set(int index, Object element)
int size()

List subList(int fromIndex, int toIndex)
Object[] toArray()

Object[] toArray(Object[] a)

Did Josh Bloch have to start from scratch when he wanted to
implement the class ArrayList, which implements the List

interface?

31-July-2002

cse142-15-Abstract © 2002 University of Washington 10

Subclasses inherit implementation

* Specify inheritance relationship using extends

public class ArrayList extends AbstractList {

public abstract class AbstractList
extends AbstractCollection implements List {

public abstract class AbstractCollection
implements Collection {

2
>

 AbstractCollection implements some methods
of the Collection interface, but not all of them.

» 1t 1S declared to be an abstract class

31-July-2002 cse142-15-Abstract © 2002 University of Washington

11

Overview Package [MEEE] Use Tree Deprecated Index Help Java™ 2 Platform

FPREW CLASS MEXT CLASS FRAMES MO FRAMES Std. Ed. v1.4.0
SUMMARY: MESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTRE | METHOD
javautil

Class ArrayList

java.lang.okject

|
+-—java.util.AbstractCollection

|
+--java.util.AbstractList

I
+——-java.util. ArrayList

All Tmplemented Interfaces:
Cloneable, Collection, List, Randomdbccess, Senalizable

public class ArrayList
extends AbstractList
mnplements List, Randomdccess, Cloneable, Senalizable

Methods inherited from class java.util. AhstractList

aquals, hashCode, iterator, listIterator, listIterator, =zubList

MMethods inherited from class java.util. AbstractCollection

containsAll, remove, remowvedll, retainAll, toeString

Methods inherited from class java.lang.Ohbject

finalize, getClass, notify, notifvall, wait, wait, wait

hIethod Summary

woid

add{int index, Ohiject element)
Inserts the specified element at the spacified position i thus list.

boelean | ogg (0bhiject o)
Lppends the spacified alemeant to the end of this list.
boolean (594R11 (Collection o)
Lppends all of the elements m the specified Collection to the end of this hist, in the order that they are rebmmed by the specified Collection's
Tterator.
boelean (594711 tint index, Collection)
Inserts all of the elements mn the specified Collection mnta this list, starting at the specified position.
weoid| gl ear ()
Femaves all of the elements from this hst.
Object (ol omne)
Feturns a shallowr copy of this ArrayList mnstance.
beolean | mpptains (Object elem)
Betums £rue if this st contains the specified element.
weid | ppoyreCapacity (int minCapacity)
Increases the caparity of this ArrayList instance, if necessary, to ensure that it can hold at least the muwher of elements specified by the
TN capanity argument.
Obj=ct | get (int index)
Eeturns the element at the specified position m this hst.
irt | index0f {(0biject elem)
Searches for the first ocmrence of the g@iven argument, testing for equality using the equals method.
boolean i&m': i
Tests if this list has no elements.
irt | lagtTndexDf (Object elem)
Eeturns the index of the last ocomrence of the specified object in this hist.
Dbject (pemowe (int index)
Eemoves the element at the specified position in this hst.
protected (remowveRange (int fromIndex, int toIndex)
weid Remowes from this List all of the elaments whose index is beterean fromIndesx, inchisive and tolndes, exchisive.
Mbiect (gat (int index, Ob-ject element)
Feplaces the element at the specified position n this hist wath the specified element.
it | gima i)
Eetnns the mmumber of elernents i this hist.
biectl] | foReray i)
Fetorns an array contanmung all of the elements m this List in the correct order.
bjzctl] |toRrray(0bisct[] a)
Fetorns an array contanmung all of the elements m this hist in the correct order; the rantime type of the rebumed array 15 that of the specified array.
waid

trimToSize !}
Trims the capacity of this ArrayList instance to be the hst's mrrent sime.

Abstract classes

* Recall that we can think of a class as a blueprint
for making objects

* An abstract class is a blueprint that 1s missing
some details that must be filled in later

» the abstract class can 1dentify some methods that
must be implemented by any subclass

“there must be a garage, but it’s not specified here”
» the abstract class can claim to implement an
interface, but leave the details to the subclasses

“this building design is approved for occupancy, but the
fire escapes must be added 1n the final design before use”

31-July-2002 cse142-15-Abstract © 2002 University of Washington 14

AbstractCollection

* Implements

boolean add(Object o) boolean remove (Object o)
boolean addAll (Collection c) boolean removeAll (Collection c)
void clear() boolean retainAll (Collection c)
boolean contains (Object o) Object[] toArray()

boolean containsAll (Collection c) Object[] toArray(Object[] a)
boolean isEmpty () String toString()

* Does not implement

abstract Iterator iterator()
abstract int size()

These are not necessarily the fastest implementations,
because the specific collection might have special
features that could be used to speed them up, but at
least there is something to get started with.

31-July-2002 cse142-15-Abstract © 2002 University of Washington 15

Design Pattern

* The pattern shown for ArrayList 1s a good
design pattern

e Interface

» defines the capabilities that must be present
» Abstract Base Classes

» basic implementation of some or all methods

 Concrete classes

» complete and well designed implementations

31-July-2002 cse142-15-Abstract © 2002 University of Washington

Collections Framework Dlagram

i Iterator r-q ---------------- : Callectian -| Map
:..-.-..-.ﬂ. ' Produces e menns ﬂ Produces e ﬂ 2
Listlterataor P T ! ,
"""""""""""" - HashMap TreeMap
Produces D List L Sat :
ﬂ,- -"E'- WeakHashMap

: : : ' Utilities —.
Arraylist LinkedList HashSet TreeSet o
Collections

. Com parahble ——pe Comparator ; Arrays
.. % !

Interfaces, Implementations, and Algorithms
From Thinking in Java, page 462

31-July-2002 cse142-15-Abstract © 2002 University of Washington 17

