
31-July-2002 cse142-15-Abstract © 2002 University of Washington 1

Abstract classes

CSE 142, Summer 2002
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/02su/

31-July-2002 cse142-15-Abstract © 2002 University of Washington 2

Readings and References

• Reading
» Chapter 15, An Introduction to Programming and

Object Oriented Design using Java, by Niño and
Hosch

• Other References
» Sections Object-Oriented Programming Concepts

and Classes and Inheritance of the Java tutorial
» http://java.sun.com/docs/books/tutorial/java/

31-July-2002 cse142-15-Abstract © 2002 University of Washington 3

Good design characteristics

• Design strategy
» Figure out the fundamental elements of a problem
» Design your solution to model those key elements

• A good design will be
» robust - it doesn’t need major changes to adapt to

small changes in the problem statement
» long-lived - it can be adapted easily over time, and

so it lives beyond the initial problem itself

31-July-2002 cse142-15-Abstract © 2002 University of Washington 4

Abstraction is the key to good design

• What are the fundamental elements of a problem?
• Those aspects of the problem that appear over

and over in different problem statements
» A scheduling problem

what are the fundamental things being scheduled?
what are the common state and behavior of scheduled things?

» An inventory problem
what are the elements actually being tracked?
what are the common state and behavior of inventoried items?

31-July-2002 cse142-15-Abstract © 2002 University of Washington 5

Inheritance

• Inheritance gives us a way to let a superclass
(or base class) implement state and behavior
that is common to a group of subclasses

• The subclasses differ in some way from the
superclass and from each other, and yet they
share some characteristics

• So we have the notion of common or shared
characteristics and unique or non-shared
characteristics

31-July-2002 cse142-15-Abstract © 2002 University of Washington 6

Interfaces

• An interface is a tool for defining the behavior
that all implementing classes will have
» it names the methods that a class must have if the

class claims to implement the interface
» the interface definition is a good tool for

identifying what must be implemented
» the interface does not provide the programmer

with any help in actually implementing the
methods!

31-July-2002 cse142-15-Abstract © 2002 University of Washington 7

The Shape interface

• Here are the methods in the Shape interface

void addTo(GWindow gw)
Rectangle getBoundingBox()
int getCenterX()
int getCenterY()
java.awt.Color getColor()
int getHeight()
int getWidth()
int getX()
int getY()

InternalGWindow currentWindow()
boolean intersects(Shape other)
void moveBy(int deltaX, int deltaY)
void moveTo(int x, int y)
void paint(java.awt.Graphics g)
void recordWindow(InternalGWindow gw)
void removeFromWindow()
void rotateAround(int pX,int pY,double d)
void setColor(java.awt.Color c)

Do we have to start from scratch when we want to implement a new class like
Triangle that implements Shape?

31-July-2002 cse142-15-Abstract © 2002 University of Washington 8

Recall the syntax of inheritance

• Specify inheritance relationship using extends

public abstract class ShapeImpl implements Shape {
protected Rectangle boundingBox;
…
public int getX() {

return boundingBox.getX();
}

}

public abstract class PolyShape extends ShapeImpl {
private int npoints;

public class Triangle extends PolyShape {

Triangle constructors
and methods

31-July-2002 cse142-15-Abstract © 2002 University of Washington 10

The List interface
void add(int index, Object element)

boolean add(Object o)

boolean addAll(Collection c)

boolean addAll(int index, Collection c)

void clear()

boolean contains(Object o)

boolean containsAll(Collection c)

boolean equals(Object o)

Object get(int index)

int hashCode()

int indexOf(Object o)

boolean isEmpty()

Iterator iterator()

int lastIndexOf(Object o)

ListIterator listIterator()

ListIterator listIterator(int index)

Object remove(int index)

boolean remove(Object o)

boolean removeAll(Collection c)

boolean retainAll(Collection c)

Object set(int index, Object element)

int size()

List subList(int fromIndex, int toIndex)

Object[] toArray()

Object[] toArray(Object[] a)

Did Josh Bloch have to start from scratch when he wanted to
implement the class ArrayList, which implements the List
interface?

31-July-2002 cse142-15-Abstract © 2002 University of Washington 11

Subclasses inherit implementation

• Specify inheritance relationship using extends

public abstract class AbstractCollection
implements Collection {

public abstract class AbstractList
extends AbstractCollection implements List {

public class ArrayList extends AbstractList {

• AbstractCollection implements some methods
of the Collection interface, but not all of them.
» it is declared to be an abstract class

methods
inherited by
ArrayList

methods
implemented by

ArrayList

31-July-2002 cse142-15-Abstract © 2002 University of Washington 14

Abstract classes
• Recall that we can think of a class as a blueprint

for making objects
• An abstract class is a blueprint that is missing

some details that must be filled in later
» the abstract class can identify some methods that

must be implemented by any subclass
“there must be a garage, but it’s not specified here”

» the abstract class can claim to implement an
interface, but leave the details to the subclasses
“this building design is approved for occupancy, but the
fire escapes must be added in the final design before use”

31-July-2002 cse142-15-Abstract © 2002 University of Washington 15

AbstractCollection
• Implements

boolean add(Object o)
boolean addAll(Collection c)
void clear()
boolean contains(Object o)
boolean containsAll(Collection c)
boolean isEmpty()

boolean remove(Object o)
boolean removeAll(Collection c)
boolean retainAll(Collection c)
Object[] toArray()
Object[] toArray(Object[] a)
String toString()

abstract Iterator iterator()
abstract int size()

• Does not implement

These are not necessarily the fastest implementations,
because the specific collection might have special
features that could be used to speed them up, but at
least there is something to get started with.

31-July-2002 cse142-15-Abstract © 2002 University of Washington 16

Design Pattern

• The pattern shown for ArrayList is a good
design pattern

• Interface
» defines the capabilities that must be present

• Abstract Base Classes
» basic implementation of some or all methods

• Concrete classes
» complete and well designed implementations

31-July-2002 cse142-15-Abstract © 2002 University of Washington 17

Interfaces, Implementations, and Algorithms
From Thinking in Java, page 462

Collections Framework Diagram

abstract classes
are not shown

