Abstract classes

CSE 142, Summer 2002

Computer Programming 1

http://www.cs.washington.edu/education/courses/142/02su/

31-July-2002 cse142-15-Abstract © 2002 University of Washington

Readings and References

* Reading

» Chapter 15, An Introduction to Programming and
Object Oriented Design using Java, by Nifio and
Hosch

e Other References

» Sections Object-Oriented Programming Concepts
and Classes and Inheritance of the Java tutorial

» http://java.sun.com/docs/books/tutorial/java/

31-July-2002 cse142-15-Abstract © 2002 University of Washington 2

Good design characteristics

* Design strategy
» Figure out the fundamental elements of a problem
» Design your solution to model those key elements
* A good design will be

» robust - it doesn’t need major changes to adapt to
small changes in the problem statement

» long-lived - it can be adapted easily over time, and
so it lives beyond the initial problem itself

31-July-2002 cse142-15-Abstract © 2002 University of Washington

Abstraction 1s the key to good design

* What are the fundamental elements of a problem?

» Those aspects of the problem that appear over
and over in different problem statements
» A scheduling problem
what are the fundamental things being scheduled?
what are the common state and behavior of scheduled things?
» An inventory problem
what are the elements actually being tracked?
what are the common state and behavior of inventoried items?

31-July-2002 cse142-15-Abstract © 2002 University of Washington 4

Inheritance Interfaces

* Inheritance gives us a way to let a superclass » An interface is a tool for defining the behavior
(or base class) implement state and behavior that all implementing classes will have
that is common to a group of subclasses » it names the methods that a class must have if the
« The subclasses differ in some way from the class claims to implement the interface
superclass and from each other, and yet they » the interface definition is a good tool for

share some characteristics identifying what must be implemented

» the interface does not provide the programmer

* So we have the notion of common or shared with any help in actually implementing the

characteristics and unique or non-shared

methods!
characteristics
31-July-2002 cse142-15-Abstract © 2002 University of Washington 5 31-July-2002 cse142-15-Abstract © 2002 University of Washington
. b b
Here are the methods in the Shape interface * Specify inheritance relationship using extends
‘public class Triangle extends PolyShape {
void addTo (GWindow gw) InternalGWindow currentWindow ()
Rectangle getBoundingBox () boolean intersects(Shape other)
int getCenterX() void moveBy (int deltaX, int deltay) public abstract class PolyShape extends ShapeImpl {
int getCenterY() void moveTo (int x, int y) private int npoints;
java.awt.Color getColor() void paint(java.awt.Graphics g)
int getHeight () void recordwWindow (InternalGWindow gw) - -
int getwidth () void removeFromWindow () public abstract class ShapeImpl {mplements Shape {
int getX() void rotateAround(int pX,int pY,double d) protected Rectangle boundingBox;
int getY¥Y () void setColor(java.awt.Color c) -
public int getx() {
return boundingBox.getX() ;
Do we have to start from scratch when we want to implement a new class like } }

Triangle that implements Shape?

31-July-2002 cse142-15-Abstract © 2002 University of Washington 7 31-July-2002 cse142-15-Abstract © 2002 University of Washington

Constructor Summary

Triangle ()
Create a new blue, filled trianple with default position and size

Triangle (int =1, int ¥1, int =2, int ¥2, int =3, int ¥3)
Create a new black, unfilled triangle between the given three vertices

Triangle (int =1, int ¥1, int =2, int ¥2, int =3, int ¥3,
java.awt.Color ¢, boolean fill)
Create a new triangle of the given color and filledness between the given three vertices

Method Summary

java. lang.String|[LoString ()
Answer the printed representation of this shape

Methods inherited from class wwese.graphics.PolyShape

addPoint, moveTo, paint, resize, rotateAround

Methods inherited from class uwcse.graphics.ShapeImpl

addTo, currentWindow, getBoundingBox, getCenter¥, getCenter¥, getColor,

gstHeight, getWidth, get®, get¥, intersscts, moveBy, recordWindow,
removeFromWindow, setColor

Methods inherited from class java.lang.Ohject

equals, getClass, hashCode, notify, notifyall, wait, wait, wait

~sejiavadocsjaraphics/uwcsefaraphics/Triangle. ttrl#method_summary =00

The List interface

void add(int index, Object element)
boolean add(Object o)

boolean addAll (Collection c)
boolean addAll (int index, Collection c) Object remove(int index)
void clear()

boolean contains (Object o)
boolean containsAll(Collection c)
boolean equals(Object o)

Object get(int index)

int hashCode ()

int indexOf (Object o)

boolean isEmpty ()

int lastIndexOf (Object o)
ListIterator listIterator ()

boolean remove (Object o)

int size()

List subList(int fromIndex,
Object[] toArray()

Object[] toArray(Objectl[] a)

Iterator iterator()

ListIterator listIterator(int index)

boolean removeAll (Collection c)
boolean retainAll (Collection c)
Object set(int index, Object element)

int toIndex)

Did Josh Bloch have to start from scratch when he wanted to

implement the class ArrayList, which implements the List
interface?

31-July-2002 cse142-15-Abstract © 2002 University of Washington

Subclasses inherit implementation

* Specify inheritance relationship using extends

‘public class ArrayList extends AbstractList {

public abstract class AbstractList
extends AbstractCollection implements List {

public abstract class AbstractCollection
implements Collection {

2
>

» AbstractCollection implements some methods
of the Collection interface, but not all of them.

» 1t 1s declared to be an abstract class

31-July-2002

cse142-15-Abstract © 2002 University of Washington

Overview Package [HERT Use Tree Deprecated Index Help

PREV CLASS MEXT CLASS FRAMES NO FRAMES
SUMRMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

JavaT 2 Platform
Std. Ed. v1.4.8

javautil

Class ArrayList

Jjava.lang.0bjsct
+|-——java. util.AbstractCollection
J‘r**jsva. util.AbgtractList
l**java.util. ArrayList

All TImplemented Interfaces:
Cloneable, Collection, List, Random&ccess, Senalizable

public class ArrayList
extends Abstractlist
implements List, RandomAccess, Cloneable, Serializable

DMethods inherited from class java.util. AbstractList

equals, hashCode, iterator, listTterator, listItesrator, sublist

DMethods inherited from class java.util. AbstractCollection

containsAll, remove, removedll, retainall, toString

Methods inherited from class java.lang.Ohject

finalize, getClass, notify, notifyall, wait, wait, wait

Method Summary

wid|add {int index, Object element)
Inserts the specified element at the specified position in this list

Beolean|add iDbiect o)
Appends the specif

boslean|addll (Collecti

d element to the end of this list

Tterator

booltan|addmll (int index, Collsction b

veid|glear i)
Removes all of the elements from this list

iee | clone (1
Retams a shallow copy of this ArrayList instance

c
Appends all of the elements in the specified Collection 1o the end of this list, in the order that they are retumed by the specified Collection's

Tnsents all of the elements in the specified Collection into this list, starting at the specified position

boslean|contains (Dbiect elem)
Fetorns true if this st contains the specified elsment.

woid ityiint minCapacity)

rininmm caparity argument

thieet | gat (int index)
Retams the element at the specified position in this list

Inareases the capacity of this ArrayList instance, if necessary, to exnre that it can hold at least the mrvher of slements specifisd by the

irt|index0f {Obiect elem)

Searches for the first ocowence of the given sxpument, testing for equality using the equal s methad,

i
Tests if this Hst has no elements.

int|lastIndex0f (0bj=ct elem)

Returns the index of the last oecurrence of the specified object in this list

bjzct |pemove (int index)
Removes the element at the specified position in this list

=d|pemoveRange (int. fromIndex, int tolndex)
oi.

a
void Removes from this List all of the elements whose index is hetween fromIndex, mchisive and tolndex, exchisive
.

ject |set (int index, Objsct slement)

Replaces the slement at the specified position in this list with the specified elament

i |size ()
Retums the muonber of elements in this List.

Mjeeell |t oRerray)

Wiecel] |toRrray(Obiect[] al

Retams an amay containing all of the elements in this list in the eorect order.

Retums an anay containing all of the elements in this list in the conect order; the vantime type of the rstumed away i that of the specified anay.

Abstract classes

* Recall that we can think of a class as a blueprint
for making objects

* An abstract class is a blueprint that is missing

some details that must be filled in later

» the abstract class can identify some methods that

must be implemented by any subclass
“there must be a garage, but it’s not specified here”

» the abstract class can claim to implement an

interface, but leave the details to the subclasses

“this building design is approved for occupancy, but the

fire escapes must be added in the final design before use”

veid|grimToSize (1 31-July-2002 cse142-15-Abstract © 2002 University of Washington 14
Taims the capacity of this ArrayList instance to be the list's carvent size.
AbstractCollection Design Pattern
* Implements o
* The pattern shown for ArrayList is a good
boolean add(Object o) boolean remove (Object o) .
boolean addall (Collection c) boolean removeAll (Collection c) deSIgn pattem
void clear() boolean retainAll (Collection c)
boolean contains(Object o) Object[] toArray() °
boolean containsAll (Collection c) Object[] toArray(Object[] a) Interface
b 1 3 i 3 eqe o
ootean iskmpty() String toString() » defines the capabilities that must be present
: » Abstract Base Classes
* Does not implement . ,
» basic implementation of some or all methods
abstract Iterator iterator()
abstract int size() * Concrete classes
These are not necessarily the fastest implementations,
because the specific collection might have special » Complete and well designed implementations
features that could be used to speed them up, but at
least there is something to get started with.
31-July-2002 cse142-15-Abstract © 2002 University of Washington 15 31-July-2002 cse142-15-Abstract © 2002 University of Washington 16

Collections Framework Dlagram

R { Collection -q Map |

.& """" P Produces Lo FOS— Produces I i ek

Listlteratar """"" b : : :

------------------------ | D ‘ HaShMap ‘ |TreeMap |
Produces List

- - WeakHashMap

Utilities

Collections

Interfaces, Implementations, and Algorithms
From Thinking in Java, page 462

31-July-2002 cse142-15-Abstract © 2002 University of Washington 17

