
29-July-2002 cse142-14-Inheritance © 2002 University of Washington 1

Inheritance

CSE 142, Summer 2002
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/02su/

29-July-2002 cse142-14-Inheritance © 2002 University of Washington 2

Readings and References

• Reading
» Sections 14.1 and 14.2 , An Introduction to

Programming and Object Oriented Design using
Java, by Niño and Hosch

• Other References
» Sections Object-Oriented Programming Concepts

and Classes and Inheritance of the Java tutorial
» http://java.sun.com/docs/books/tutorial/java/

29-July-2002 cse142-14-Inheritance © 2002 University of Washington 3

Relationships between classes

• Classes can be related via composition
» This is often referred to as the “has-a” relationship
» eg, a Car has a list in an ArrayList of Shapes

• Classes can also be related via inheritance
» This is often referred to as the “is-a” relationship
» eg, a Triangle is a PolyShape

29-July-2002 cse142-14-Inheritance © 2002 University of Washington 4

Composition Vs. Inheritance

• The “has-a” relationship is composition
• The “is-a” relationship is inheritance
• Prefer composition to inheritance
• Beware of inheritance graphs that are either

very wide or very deep
» very wide means that you are perhaps not

abstracting enough at the top layer
» very deep means that you are adding only a little

functionality at each layer and making fine
distinctions that may not survive the test of time

29-July-2002 cse142-14-Inheritance © 2002 University of Washington 5

Car has a list of Shapes

Car
ArrayList myShapes

int cornerX

int cornerY

int deltaY

int deltaX

etc

ArrayList
int size

item 0

item 1

item 2

etc

Oval

Rectangle

Oval

Triangle is a PolyShape

is a

is a

is a

29-July-2002 cse142-14-Inheritance © 2002 University of Washington 7

Why use inheritance?
• Code simplification

» Avoid doing the same operation in two places
» Avoid storing “matching state” in two places

• Code simplification
» We can deal with objects based on their common

behavior, and don’t need to have special cases for
each subtype

• Code simplification
» Lots of elegant code has already been written - use

it, don’t try to rewrite everything from scratch

29-July-2002 cse142-14-Inheritance © 2002 University of Washington 8

Why use inheritance?

• Example: Shapes
» What is some behavior common to all shapes?

movement, intersection

» What are some attributes common to all shapes?
size, location, color

• We defined behaviors that a Shape must have
when we discussed the Shape interface

• But even with an interface defined, we still
need implementations for each method

29-July-2002 cse142-14-Inheritance © 2002 University of Washington 9

The Shape interface
• From OvalSlider.java

• OvalSlider doesn’t care about the special
characteristics of an Oval, it only cares that an
Oval can do the things that a good Shape
should be able to do

/** the Shape that we are moving around on the screen */
private Shape theShape;

void addTo(GWindow gw)
Rectangle getBoundingBox()
int getCenterX()
int getCenterY()
java.awt.Color getColor()
int getHeight()
int getWidth()
int getX()
int getY()

uwcse.graphics.InternalGWindow currentWindow()
boolean intersects(Shape other)
void moveBy(int deltaX, int deltaY)
void moveTo(int x, int y)
void paint(java.awt.Graphics g)
void recordWindow(uwcse.graphics.InternalGWindow gw)
void removeFromWindow()
void rotateAround(int pivotX, int pivotY, double degrees)
void setColor(java.awt.Color c)

29-July-2002 cse142-14-Inheritance © 2002 University of Washington 10

Why use inheritance?
• Sometimes it takes several levels of abstraction to

get to concrete objects
» a Triangle is a PolyShape, which is a ShapeImpl, which

is an Object. At each of these levels, there might be
behavior to “factor out” or abstract away.

• All Shapes must implement similar methods
» we want to do “int x = blob.getX()”
» if both Triangles and Ovals implement this the same

way, we can implement getX() in one base class, and
use it in the subclasses instead of rewriting it each time

Triangle constructors and methods

29-July-2002 cse142-14-Inheritance © 2002 University of Washington 12

Syntax of inheritance

• Specify inheritance relationship using extends
» this is just like we did with interfaces

public abstract class ShapeImpl implements Shape {
protected Rectangle boundingBox;
…
public int getX() {

return boundingBox.getX();
}

}

public abstract class PolyShape extends ShapeImpl {
private int npoints;

public class Triangle extends PolyShape {

29-July-2002 cse142-14-Inheritance © 2002 University of Washington 13

Reduce the need for duplicated code

• Remember our collection of pets?
» Dog has getMealSize() and eat(double w) methods
» Cat has getMealSize() and eat(double w) methods
» and they are implemented exactly the same way

• We can define a class named BasicAnimal that
implements these methods once, and then the
subclasses can extend it and add their own
implementations of other methods if they like

29-July-2002 cse142-14-Inheritance © 2002 University of Washington 14

BasicAnimal class

29-July-2002 cse142-14-Inheritance © 2002 University of Washington 15

Dog as a subclass of BasicAnimal

29-July-2002 cse142-14-Inheritance © 2002 University of Washington 16

Using the superclass constructor
• Constructor of the superclass is called to do much

(or all) of the initialization for the subclass

public class BasicAnimal implements Animal {
public BasicAnimal(String theName,double serving,double weight) {

name = theName;
mealSize = serving;
currentWeight = weight;
System.out.println("Created "+name);

}

public class Dog extends BasicAnimal {
public Dog(String theName) {

super(theName,0.5,20);
}
public Dog(String theName,double serving,double weight) {

super(theName,serving,weight);
}

29-July-2002 cse142-14-Inheritance © 2002 University of Washington 17

this() and super() as constructors
• You can use an alias to call another constructor

» super(...) to call a superclass constructor
» this(…) to call another constructor from same class

• The call to the other constructor must be the first
line of the constructor
» If neither this() nor super() is the first line in a

constructor, a call to super() is inserted automatically by
the compiler. This call takes no arguments. If the
superclass has no constructor that takes no arguments,
the class will not compile.

29-July-2002 cse142-14-Inheritance © 2002 University of Washington 18

Overriding methods
• Overriding methods is how a subclass refines or

extends the behavior of a superclass method
• Manager and Executive classes extend Employee
• How do we specify different behavior for

Managers and Executives?
» Employee:

double pay() {return hours*rate + overtime*(rate+5.00);}
» Manager:

double pay() {return hours*rate;}
» Executive:

double pay() {return salary + bonus;}

29-July-2002 cse142-14-Inheritance © 2002 University of Washington 19

Overriding methods

public class Employee {

// other stuff

public float pay() {

return hours*rate + overtime*(rate+5.00);

}

}

public class Manager extends Employee {

// other stuff

public float pay() {

return hours*rate;

}

}

29-July-2002 cse142-14-Inheritance © 2002 University of Washington 20

// in superclass
public void pay() {...}

// in subclass
public void pay() {...} // valid
private void pay() {...} // invalid

Overriding rules

• A method cannot be made more private than
the superclass method it overrides

29-July-2002 cse142-14-Inheritance © 2002 University of Washington 21

Overriding rules

• A method’s return type and parameters must
match those in the overridden superclass
method exactly in order to override it.

// in superclass
public int pay(int hours) {}

// in subclass
public int pay(int b) {} // okay, overrides
public long pay(int b) {} // compile error

29-July-2002 cse142-14-Inheritance © 2002 University of Washington 22

instanceof

• Used to test an object for class membership

• Good way to ensure that a cast will succeed
• Tests for a relationship anywhere along the

hierarchy
» Also tests whether a class implements an interface

• What class must <classname> represent for the
following expression to be true always?

if (v instanceof <classname>) { … }

if (bunch.get(i) instanceof Dog) {…}

29-July-2002 cse142-14-Inheritance © 2002 University of Washington 23

instanceof example with interface
ArrayList onStage = theStage.getActors();

for (int i=0; i<onStage.size(); i++) {

if (onStage.get(i) instanceof ClickableActor) {

ClickableActor clickee = (ClickableActor)onStage.get(i);

if (clickee.intersects(cursor)) {

clickee.doClickAction(theStage);

if (clickee == runButton) {

if (runButton.isEnabled()) {

theStage.animate();

} else {

theStage.quitAnimation();

}

}

}

}

}

