
17-July-2002 cse142-11-ExtendingInterfaces © 2002 University of Washington 1

Extending Interfaces

CSE 142, Summer 2002
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/02su/

17-July-2002 cse142-11-ExtendingInterfaces © 2002 University of Washington 2

Readings and References

• Reading

• Other References
» Chapter 6, Interfaces, in Core Java volume 1, by

Horstmann and Cornell

17-July-2002 cse142-11-ExtendingInterfaces © 2002 University of Washington 3

Using an interface

• By specifying an interface, you can guarantee
to any caller that the implementing class
contains a particular set of methods

• The definition of the interface shows exactly
what the methods must look like to the public

• All methods in the interface must be
implemented in order to make this guarantee
» an animal that can eat and make noise, but cannot

sleep, is not a real Animal
17-July-2002 cse142-11-ExtendingInterfaces © 2002 University of Washington 4

Recall the Actor interface
• We are using the Actor interface in our code

• OvalSlider guarantees that it has implemented
the methods in the Actor interface

public class OvalSlider implements Actor {...

void addTo(uwcse.graphics.GWindow w)
 Every Actor must be able to draw itself on a GWindow.

void doAction(Stage stage)
 Every Actor must implement some fundamental action.

void removeFromWindow()
 Every Actor must be able to remove itself from its GWindow.

17-July-2002 cse142-11-ExtendingInterfaces © 2002 University of Washington 5

Definition of the Actor interface

• The Actor interface is defined in the UWCSE
library

• It has been defined the same way for over a
year and much code has been written using it

• What if we want to add some capabilities that
we now expect Actors to be able to do?
» If we change Actor we will break existing code

because the new methods that we want to define
don’t exist in the old code

17-July-2002 cse142-11-ExtendingInterfaces © 2002 University of Washington 6

keyword extends

• We can define a new interface that extends
another interface

• This means just what you would think it means
» interface Voter extends Citizen

I know how to do the things that every Citizen can do,
plus I know how to do the things that a Voter can do

» interface List extends Collection
I know how to do everything that a Collection can do,
plus I know how to do the special things that a List can do

17-July-2002 cse142-11-ExtendingInterfaces © 2002 University of Washington 7

interface ClickableActor extends Actor
package skel;

import uwcse.graphics.*;

import uwcse.animation.*;

/**

* Extend the basic interface for an actor in an animation

* so that it can help recognize that it has been clicked.

*/

public interface ClickableActor extends Actor {

/**

* Decide if the given Shape intersects any of the Shapes that

* this object is displaying.

* @param other the other Shape that we might intersect with

*/

public boolean intersects(Shape other);

/**

* This method is called whenever this Actor was the one clicked on.

* @param stage the Stage that we are being displayed on

*/

public void doClickAction(Stage stage);

}

17-July-2002 cse142-11-ExtendingInterfaces © 2002 University of Washington 8

added methods in ClickableActor

• By extending the Actor interface, the
ClickableActor interface adds two new methods

public boolean intersects(Shape other);

public void doClickAction(Stage stage);

• Any class that implements ClickableActor is
saying:
» it implements all the methods of Actor
» and it implements “intersects” and “doClickAction”

17-July-2002 cse142-11-ExtendingInterfaces © 2002 University of Washington 9

ShapeSlider is a ClickableActor

• We implemented the Actor interface in
OvalSlider

• I’ve written ShapeSlider to handle more
Shapes and to be clickable

public class OvalSlider implements Actor {...

public class ShapeSlider implements ClickableActor {…

public boolean intersects(Shape other) {…

public void doClickAction(Stage stage) {

homework 4 with frogCast

17-July-2002 cse142-11-ExtendingInterfaces © 2002 University of Washington 10

intersects(Shape other)

/**

* Decide if the other Shape intersects the Shape that

* this object is displaying. This method uses the

* intersects(other) method to decide if there is an

* intersection.

* @param other the other Shape that we might intersect with

*/

public boolean intersects(Shape other) {

return theShape.intersects(other);

}

17-July-2002 cse142-11-ExtendingInterfaces © 2002 University of Washington 11

doClickAction(Stage stage)

/**

* This method is called whenever this Actor is

* clicked on. The method does whatever is needed to

* implement the clicked-on behavior for this class of

* objects.

* @param stage the Stage that we are being displayed on

*/

public void doClickAction(Stage stage) {

// System.out.println("I was clicked, said "+this);

deltaX = -deltaX;

deltaY = -deltaY;

if (clickSound != null) {

clickSound.play();

}

}

17-July-2002 cse142-11-ExtendingInterfaces © 2002 University of Washington 12

Use the simplest interface you can
• All of the cast members are Actors

» Some of the cast members are ClickableActors
• So if a class doesn’t care about the snazzy

clickable features (intersects, doClickAction) it
can just deal with the objects as Actors

/* Add all the actors to the stage */

for (int i=0; i<theCast.size(); i++) {

Actor stiff = (Actor)theCast.get(i);

System.out.println("Adding "+stiff);

theStage.addActor(stiff);

} from skel.AssistantDirector

17-July-2002 cse142-11-ExtendingInterfaces © 2002 University of Washington 13

Collections Framework Diagram

•Interfaces, Implementations, and Algorithms
•From Thinking in Java, page 462

ArrayList

 List

Collection

17-July-2002 cse142-11-ExtendingInterfaces © 2002 University of Washington 14

ArrayList implements List

• The ArrayList class is an implementation of
the List interface

• Therefore, all the methods that are expected
for Lists are implemented one way or another
by ArrayList

public class ArrayList extends AbstractList
implements List, RandomAccess, Cloneable, java.io.Serializable

{...

ArrayList.java

17-July-2002 cse142-11-ExtendingInterfaces © 2002 University of Washington 15

List interface extends Collection interface

• The Collection interface is the basic set of
things you can do with a bunch of objects

• The List interface adds the idea of the objects
being in a particular sequential order

• Every class that implements the List interface
» has all the methods in the Collection interface
» plus some more for the List interface

17-July-2002 cse142-11-ExtendingInterfaces © 2002 University of Washington 16

Collection and List

• Collection
» The root interface in the collection hierarchy. A collection

represents a group of objects, known as its elements. Some
collections allow duplicate elements and others do not.
Some are ordered and others unordered.

• List
» An ordered collection (also known as a sequence). The

user of this interface has precise control over where in the
list each element is inserted. The user can access elements
by their integer index (position in the list), and search for
elements in the list.

