
15-July-2002 cse142-10-Interfaces © 2002 University of Washington 1

Interfaces

CSE 142, Summer 2002
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/02su/

15-July-2002 cse142-10-Interfaces © 2002 University of Washington 2

Readings and References

• Reading
» Section 15.1.2, An Introduction to Programming and

Object Oriented Design using Java, by Niño and
Hosch
skim for reference; it’s not the clearest discussion ever written

• Other References
» The Java Tutorial on Interfaces

http://java.sun.com/docs/books/tutorial/java/interpack/interfaces.html

15-July-2002 cse142-10-Interfaces © 2002 University of Washington 3

How can we manage lists of objects?

• We need a class that will let us ...
» add things to the list
» look at the elements of the list one by one
» find out how many things have been put in the list
» remove things from the list
» … among other things

15-July-2002 cse142-10-Interfaces © 2002 University of Washington 4

Recall the discussion of ArrayLists

• ArrayList is a Java class that specializes in storing
references to an ordered collection of things

• The ArrayList class is defined in the Java libraries
» part of the java.util package

• We can store any kind of object in an ArrayList
» myList.add(theDog);

• We can retrieve an object from the ArrayList by
specifying its index number
» myList.get(0)

15-July-2002 cse142-10-Interfaces © 2002 University of Washington 5

Casting
• In the previous lecture, we got out of the

problem of the compiler not knowing what
was in the ArrayList by making a cast
» We know that we've only placed String objects

into the ArrayList. We can promise the compiler
that the thing coming back out of the ArrayList is
actually a String:

public void printFirstNameString(ArrayList names) {
String name = (String)names.get(0);
System.out.println("The first name is " + name);

}

15-July-2002 cse142-10-Interfaces © 2002 University of Washington 6

PetSet example

• In the PetSet homework, we had a group of
different animals that we wanted to operate with

• Can we keep track of the objects in a more
general way using ArrayLists?
» yes, we can, but there are just a few little details ...

public void dine() {
aCat.eat(2*aCat.getMealSize());
aDog.eat(2*aDog.getMealSize());
aBird.eat(2*aBird.getMealSize());

}

15-July-2002 cse142-10-Interfaces © 2002 University of Washington 7

Using ArrayLists : add String

• With Strings, we did this

ArrayList names = new ArrayList();

names.add("Billy");

• add(Object o) method adds an object to the list
at the end of the list

• The object can be of any class type
» String, Dog, Rectangle, …

15-July-2002 cse142-10-Interfaces © 2002 University of Washington 8

Using ArrayLists : add Dog and Cat

• With Dogs and Cats, we can do the same thing

• add(Object o) method adds an object to the list
at the end of the list

• So we got them in to the list okay ...

public PetSet() {
theBunch = new ArrayList();
theBunch.add(new Cat("Smoky",0.1,5));
theBunch.add(new Dog("Fred"));
theBunch.add(new Sparrow("Little Brown Bird"));

}

example PetSet ArrayList

this ArrayList contains these Objects

15-July-2002 cse142-10-Interfaces © 2002 University of Washington 10

Cast to what?
• With Strings, we promised that the Object

from the ArrayList was actually a String:

public void printFirstNameString(ArrayList names) {
String name = (String)names.get(0);
System.out.println("The first name is " + name);

}

• But what can we do now?
» One Object is a Cat
» another Object is a Dog
» and another is a Sparrow

15-July-2002 cse142-10-Interfaces © 2002 University of Washington 11

Recall the definition of casting
• The pattern is

» (<class-name>)<expression>
• For example

String name = (String)names.get(0);

• Casting an object does not change the type of
the object

• A cast is a promise by the programmer that the
object can be used to represent something of
the stated type and nothing will go wrong

15-July-2002 cse142-10-Interfaces © 2002 University of Washington 12

What can we say about an animal?

• What we need is something that we can say
that is true of all the various animals that we
have created

• They all have eat(), sleep(), getMealSize(), and
a voice of some sort

• So we can promise that:
» We don’t know exactly what kind of an animal it

is, but we do know that it can eat, sleep, make a
noise, and tell you its meal size

15-July-2002 cse142-10-Interfaces © 2002 University of Washington 13

an Interface

• Java has a very cool mechanism for this
» an interface

• You can say that any class that claims to be an
Animal will guarantee that it has methods for
all the things that any Animal must do

• The definition of the interface shows exactly
what the methods must look like to the public
» the actual implementation is not in the interface

15-July-2002 cse142-10-Interfaces © 2002 University of Washington 14

public interface Animal
/**
* This interface specifies the behavior that a class
* must implement in order to be considered a real Animal.
*
*/
public interface Animal {

/**
* Provide this animal with a way to rest when weary.
*/
public void sleep();
/**
* Eat some goodies. There is some weight gain after eating.
* @param pounds the number of pounds of food provided.
*/
public void eat(double pounds);
/**
* get the meal size defined for this animal.
* @return meal size in pounds
*/
public double getMealSize();
/**
* Provide this animal with a voice.
*/
public void noise();

}

The Animal interface

15-July-2002 cse142-10-Interfaces © 2002 University of Washington 16

using an interface in a class definition

• Each of the classes that wants to be considered
an Animal must say so at the very beginning of
the class definition

• You are telling the compiler that this class
guarantees that it will implement all the
methods that are required in the interface

public class Dog implements Animal {...
public class Cat implements Animal {...
public class Sparrow implements Animal {...

15-July-2002 cse142-10-Interfaces © 2002 University of Washington 17

what is the guarantee?
/**
* This interface specifies the behavior that a class
* must implement in order to be considered a real Animal.
*
*/
public interface Animal {

/**
* Provide this animal with a way to rest when weary.
*/
public void sleep();
/**
* Eat some goodies. There is some weight gain after eating.
* @param pounds the number of pounds of food provided.
*/
public void eat(double pounds);
/**
* get the meal size defined for this animal.
* @return meal size in pounds
*/
public double getMealSize();
/**
* Provide this animal with a voice.
*/
public void noise();

}

No problem. We already have these
in every animal we’ve written so far.

Small problem. Each animal so far
has had a different voice.

15-July-2002 cse142-10-Interfaces © 2002 University of Washington 18

conform to expectations ...
• Rewrite each of the animal classes to use the

same method name when they make their noise
public class Dog implements Animal {
...
/**
* Provide this animal with a voice.
*/
public void noise() {

System.out.println(name+" : Woof! Woof!");
}

public class Cat implements Animal {
...
/**
* Provide this animal with a voice.
*/
public void noise() {

System.out.println(name+" : Meow! Meow!");
}

15-July-2002 cse142-10-Interfaces © 2002 University of Washington 19

using the Animal interface in PetSet

• Now we know that all of the animals will
satisfy the Animal interface, no matter what
kind of object they are

• So PetSet can guarantee that they are Animals
being retrieved from the ArrayList, no matter
what else they might be

15-July-2002 cse142-10-Interfaces © 2002 University of Washington 20

Cast to Animal

• Tell the compiler that the ArrayList contains
objects that are Animals

public void dine() {
for (int i=0; i<theBunch.size(); i++) {

Animal pet = (Animal)theBunch.get(i);
double s = pet.getMealSize();
pet.eat(2*pet.getMealSize());

}
}

15-July-2002 cse142-10-Interfaces © 2002 University of Washington 21

Cast to Animal and use the result

• The cast can be buried right in the usage
» you don’t have to declare a local variable first
» but many times it is clearer to use local variables

instead of trying to do everything at once

public void sleep() {
for (int i=0; i<theBunch.size(); i++) {

((Animal)theBunch.get(i)).sleep();
}

}

15-July-2002 cse142-10-Interfaces © 2002 University of Washington 22

The Actor interface
• We are already using interfaces in our code

• OvalSlider guarantees that it has implemented
the methods in the Actor interface

public class OvalSlider implements Actor {...

void addTo(uwcse.graphics.GWindow w)
 Every Actor must be able to draw itself on a GWindow.

void doAction(Stage stage)
 Every Actor must implement some fundamental action.

void removeFromWindow()
 Every Actor must be able to remove itself from its GWindow.

15-July-2002 cse142-10-Interfaces © 2002 University of Washington 23

The Shape interface
• From OvalSlider.java

• OvalSlider doesn’t care about the special
characteristics of an Oval, it only cares that an
Oval can do the things that a good Shape
should be able to do

/** the Shape that we are moving around on the screen */
private Shape theShape;

void addTo(GWindow gw)
Rectangle getBoundingBox()
int getCenterX()
int getCenterY()
java.awt.Color getColor()
int getHeight()
int getWidth()
int getX()
int getY()

uwcse.graphics.InternalGWindow currentWindow()
boolean intersects(Shape other)
void moveBy(int deltaX, int deltaY)
void moveTo(int x, int y)
void paint(java.awt.Graphics g)
void recordWindow(uwcse.graphics.InternalGWindow gw)
void removeFromWindow()
void rotateAround(int pivotX, int pivotY, double degrees)
void setColor(java.awt.Color c)

