ArrayLists

CSE 142, Summer 2002

Computer Programming 1

http://www.cs.washington.edu/education/courses/142/02su/

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington

Readings and References

* Reading

» Chapter 14 and 17, Introduction to Programming in
Java, Dugan

* Other References

» The Java Tutorial on Collections, by Joshua Block
http://java.sun.com/docs/books/tutorial/collections/

» Josh Block is also the author of the Java code that
implements Collections in the Java libraries

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 2

Collections in the Real World

 Think about:
» words in a dictionary
» list of pets in your household
» deck of cards
» books in a library
» songs on a CD

* These things are all collections.

* Some collections are ordered, others are
unordered

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington

How can we manage lists of objects?

* We need a class that will let us ...
» add things to the list
» look at the elements of the list one by one
» find out how many things have been put in the list
» remove things from the list

» ... among other things

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 4

PetSet example

* Think about PetSet in homework 2

» There were two animal objects in the distributed
version of PetSet

» You designed a new type of animal, and then created
at least one new object of this new type

» In order to manage the activities of the new animal
you had to change the source code in PetSet

* Changing source code in order to implement
variations in the data set is costly and inflexible

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 5

-Ioix]

Project Edit Tools View Help
Mew Class [PetSet
—I ||| The instance variables contain
| compe | S references to the Cat, Dog and
GRS | [h] .
<7l Sparrow objects that PetSet
[I [| .
{ | | created with the new operator
cat P | =
View EABluel: Dbje pector of class Pete =al x|
[¥] Uses
¥ Inheritance Ohject of class PetS

Static fields /
T

Object fields /

ICat cat = <object reference>

Sparrow hird = <object reference>

Doy dog = <object reference>

cat, bird and dog are the instance
variables of object petSet 1

Close

PetSet example

» Changing source code in order to implement
variations in the data set is costly and inflexible

public void dine() {
cat.eat (cat.getMealSize() *2) ;
bird.eat (bird.getMealSize () *2);
dog.eat (dog.getMealSize () *2) ;

}

* It would be nice if we could somehow keep track
of the objects in a more general way

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 7

An Ordered Collection: ArrayList

» ArrayList is a Java class that specializes in
representing an ordered collection of things
* The ArrayList class is defined in the Java libraries
» part of the java.util package
* We can store any kind of object in an ArrayList
» myList.add(theDog);
* We can retrieve an object from the ArrayList by
specifying its index number
» myList.get(0)

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 8

ArrayList

ArrayList ()

» This constructor builds an empty list with an initial
capacity of 10

e int size()
» This method returns the number of elements in this list
® boolean add(Object o)

» This method appends the specified element to the end of
this list

Object get(int index)

» This method returns the element at the specified position

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 9

Using ArrayLists

ArrayList 1s part of the java.util package
» import java.util.*; to use ArrayList

Creating a list

ArrayList names = new ArrayList ();

Getting the size
int numberOfNames = names.size();
Adding things

names.add ("Billy") ;

names.add ("Susan") ;
names.add ("Frodo") ;

NameList.java

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 10

Using ArrayLists : import

» ArrayList is part of the java.util package
> import java.util.ArrayList; to use ArrayList
* The import statement tells the Java compiler
where to look when it can’t find a class
definition in the local directory
» We defined Cat, Dog, Sparrow but not ArrayList

» We tell the compiler to look in package java.util
for the definition of ArrayList by putting an
import statement at the top of the source code file

» Java always looks in package java.lang on its own

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 1

Using ArrayLists : constructor

* Creating a new ArrayList object

ArrayList names = new ArraylList ();

» There are several constructors available
» ArrayList ()
Construct an empty list with an initial capacity of 10
» ArrayList (int initialCapacity)
Construct an empty list with the specified initial capacity
» ArrayList (Collection c)

Construct a list containing elements from another collection

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 12

Using ArrayLists : size

 Getting the size

int numberOfNames = names.size();

o size() method returns integer value that caller
can use to control looping, check for limits, etc

» This is similar to the getMealSize() method that you
had in your animal object

» The object keeps track of relevant information, and
can tell the caller when there is a need to know

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 13

Using ArrayLists : add

* Adding things

names.add ("Billy") ;

e add(object o) method adds an object to the list
at the end of the list

» The object can be of any class type
» String, Dog, Rectangle, ...
» can’t add “primitive” types like int or double

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 14

So now what?

* We can create a list, and we can add items to it.

But we need to get them out, too!

Use the get (int index) method to retrieve
references to objects in the ArrayList

String tag = (String)names.get(0);

But there are just a few little details to be
worked out ...

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 15

indexed access to elements

» ArrayLists provide indexed access

» We can ask for the it item of the list, where the
first item 1s at index 0, the second at index 1, and
the last item 1s at index n-1 (where 7 is the size of
the collection).

ArrayList names = new ArrayList ();
names.add ("Billy") ;

names.add ("Susan") ;

names.get (0)

names.get (1)

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 16

A Problem

Object

* We want to get things out of an ArrayList
* We might write the following:

public void printFirstNameString(ArrayList names) {
String name = names.get(0);

System.out.println("The first name is " + name);

}

* But BlueJ complains at the green line:

» incompatible types:
» found: Object
» required: String

* The return type of the method get() 1s Object.

* Think of Object as Java's way of saying "any
type of class"
 All classes in Java have an "is-a" relationship
to Object. In other words:
» every String is an Object
» every Rectangle is an Object
» every ArrayList is an Object

* Object is the “mother of all classes”

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 17

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 18

Making Promises: Casting

Casting

 The solution to our get() problem is to make a
promise

» We know that we've only placed String objects
into the ArrayList. We can promise the compiler
that the thing coming back out of the ArrayList is
actually a String:

public void printFirstNameString (ArrayList names) {
String name = (String)names.get(0);
System.out.println("The first name is " + name);

}

* This promise is called a cast.

The pattern is

» (<class-name>)<expression>

For example

String name = (String)names.get(0);

Casting an object does not change the type of
the object

A cast is a promise by the programmer that the
object can be used to represent something of
the stated type and nothing will go wrong

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 19

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 20

Miscasting

* We can lie about casting, but it will be caught
at runtime

public void printFirstNameString(ArrayList names) {
String name = (String)names.get(0);

System.out.println("The first name is " + name);

Oval ovoid =|(0va1)names.get(1);

7

this will fail when you run the program

}

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington

21

Reference vs. Primitive Types

» A few Java types are primitive:
int, double, boolean, and a few other numeric types we haven't seen
» Are atomic chunks with no parts (no instance variables)
» Exist without having to be allocated with new
» Cannot be message receivers, but can be arguments of
messages and unary and binary operators
 All others are reference types:
Rectangle, BankAccount, Color, String, etc.
» Instances of the class are created using “new”
» Can have instance variables and methods

» All are special cases of the generic type “Object”

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 22

