
12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 1

ArrayLists

CSE 142, Summer 2002
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/02su/

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 2

Readings and References

• Reading
» Chapter 14 and 17, Introduction to Programming in

Java, Dugan

• Other References
» The Java Tutorial on Collections, by Joshua Block

http://java.sun.com/docs/books/tutorial/collections/

» Josh Block is also the author of the Java code that
implements Collections in the Java libraries

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 3

Collections in the Real World
• Think about:

» words in a dictionary
» list of pets in your household
» deck of cards
» books in a library
» songs on a CD

• These things are all collections.
• Some collections are ordered, others are

unordered
12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 4

How can we manage lists of objects?

• We need a class that will let us ...
» add things to the list
» look at the elements of the list one by one
» find out how many things have been put in the list
» remove things from the list
» … among other things

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 5

PetSet example

• Think about PetSet in homework 2
» There were two animal objects in the distributed

version of PetSet
» You designed a new type of animal, and then created

at least one new object of this new type
» In order to manage the activities of the new animal

you had to change the source code in PetSet
• Changing source code in order to implement

variations in the data set is costly and inflexible cat, bird and dog are the instance
variables of object petSet_1

The instance variables contain
references to the Cat, Dog and
Sparrow objects that PetSet
created with the new operator

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 7

PetSet example

• Changing source code in order to implement
variations in the data set is costly and inflexible

• It would be nice if we could somehow keep track
of the objects in a more general way

public void dine() {
cat.eat(cat.getMealSize()*2);
bird.eat(bird.getMealSize()*2);
dog.eat(dog.getMealSize()*2);

}

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 8

An Ordered Collection: ArrayList

• ArrayList is a Java class that specializes in
representing an ordered collection of things

• The ArrayList class is defined in the Java libraries
» part of the java.util package

• We can store any kind of object in an ArrayList
» myList.add(theDog);

• We can retrieve an object from the ArrayList by
specifying its index number
» myList.get(0)

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 9

ArrayList
• ArrayList()

» This constructor builds an empty list with an initial
capacity of 10

• int size()

» This method returns the number of elements in this list
• boolean add(Object o)

» This method appends the specified element to the end of
this list

• Object get(int index)

» This method returns the element at the specified position

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 10

Using ArrayLists

• ArrayList is part of the java.util package
» import java.util.*; to use ArrayList

• Creating a list
ArrayList names = new ArrayList ();

• Getting the size
int numberOfNames = names.size();

• Adding things
names.add("Billy");
names.add("Susan");

names.add("Frodo");

NameList.java

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 11

Using ArrayLists : import

• ArrayList is part of the java.util package
» import java.util.ArrayList; to use ArrayList

• The import statement tells the Java compiler
where to look when it can’t find a class
definition in the local directory
» We defined Cat, Dog, Sparrow but not ArrayList
» We tell the compiler to look in package java.util

for the definition of ArrayList by putting an
import statement at the top of the source code file

» Java always looks in package java.lang on its own
12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 12

Using ArrayLists : constructor

• Creating a new ArrayList object

ArrayList names = new ArrayList ();

• There are several constructors available
» ArrayList()

Construct an empty list with an initial capacity of 10
» ArrayList(int initialCapacity)

Construct an empty list with the specified initial capacity
» ArrayList(Collection c)

Construct a list containing elements from another collection

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 13

Using ArrayLists : size

• Getting the size

int numberOfNames = names.size();

• size() method returns integer value that caller
can use to control looping, check for limits, etc
» This is similar to the getMealSize() method that you

had in your animal object
» The object keeps track of relevant information, and

can tell the caller when there is a need to know

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 14

Using ArrayLists : add

• Adding things

names.add("Billy");

• add(Object o) method adds an object to the list
at the end of the list

• The object can be of any class type
» String, Dog, Rectangle, …
» can’t add “primitive” types like int or double

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 15

So now what?

• We can create a list, and we can add items to it.
• But we need to get them out, too!
• Use the get(int index) method to retrieve

references to objects in the ArrayList

String tag = (String)names.get(0);

• But there are just a few little details to be
worked out ...

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 16

indexed access to elements

• ArrayLists provide indexed access
» We can ask for the ith item of the list, where the

first item is at index 0, the second at index 1, and
the last item is at index n-1 (where n is the size of
the collection).

ArrayList names = new ArrayList ();
names.add("Billy");
names.add("Susan");
names.get(0)
names.get(1)

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 17

A Problem
• We want to get things out of an ArrayList
• We might write the following:

public void printFirstNameString(ArrayList names) {

String name = names.get(0);

System.out.println("The first name is " + name);

}

• But BlueJ complains at the green line:
» incompatible types:
» found: Object
» required: String

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 18

Object
• The return type of the method get() is Object.
• Think of Object as Java's way of saying "any

type of class"
• All classes in Java have an "is-a" relationship

to Object. In other words:
» every String is an Object
» every Rectangle is an Object
» every ArrayList is an Object

• Object is the “mother of all classes”

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 19

Making Promises: Casting
• The solution to our get() problem is to make a

promise
» We know that we've only placed String objects

into the ArrayList. We can promise the compiler
that the thing coming back out of the ArrayList is
actually a String:

• This promise is called a cast.

public void printFirstNameString(ArrayList names) {
String name = (String)names.get(0);
System.out.println("The first name is " + name);

}

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 20

Casting
• The pattern is

» (<class-name>)<expression>
• For example

String name = (String)names.get(0);

• Casting an object does not change the type of
the object

• A cast is a promise by the programmer that the
object can be used to represent something of
the stated type and nothing will go wrong

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 21

Miscasting
• We can lie about casting, but it will be caught

at runtime

public void printFirstNameString(ArrayList names) {

String name = (String)names.get(0);

System.out.println("The first name is " + name);

Oval ovoid = (Oval)names.get(1);

}

this will fail when you run the program

12-July-2002 cse142-09-ArrayLists © 2002 University of Washington 22

Reference vs. Primitive Types
• A few Java types are primitive:

int, double, boolean, and a few other numeric types we haven't seen

» Are atomic chunks with no parts (no instance variables)
» Exist without having to be allocated with new
» Cannot be message receivers, but can be arguments of

messages and unary and binary operators

• All others are reference types:
Rectangle, BankAccount, Color, String, etc.

» Instances of the class are created using “new”
» Can have instance variables and methods
» All are special cases of the generic type “Object”

