
8-July-2002 cse142-07-Decisions © 2002 University of Washington 1

Decisions

CSE 142, Summer 2002
Computer Programming 1

http://www.cs.washington.edu/education/courses/142/02su/

8-July-2002 cse142-07-Decisions © 2002 University of Washington 2

Readings and References

• Reading
» Chapter 6, An Introduction to Programming

and Object Oriented Design using Java, by
Niño and Hosch

» Chapter 11, Introduction to Programming in
Java, Dugan

8-July-2002 cse142-07-Decisions © 2002 University of Washington 3

Implementing Interesting Behavior

• We need to be able to make decisions in order to
have objects behave in interesting ways
» Has the Shape moved to the edge of the window?
» Did the user supply any arguments to the program?
» Is the display window visible?
» How many shapes are moving around on the screen?

• The if statement is our primary tool for
changing the flow of control in the program

8-July-2002 cse142-07-Decisions © 2002 University of Washington 4

Sequences and Blocks

/* Simple sequence */

statement1;
statement2;

/* Block - can replace a single statement anywhere */

{
statement1;
statement2;

}

8-July-2002 cse142-07-Decisions © 2002 University of Washington 5

The if statement
if (condition) {

this block is executed if the condition is true
} else {

this block is executed if the condition is false
}

• The condition is a logical expression that is
evaluated to be true or false, depending on
the values in the expression and the operators

8-July-2002 cse142-07-Decisions © 2002 University of Washington 6

operators that produce boolean results

• All of the normal arithmetic comparison
operators are available
> : greater than
< : less than
>= : greater than or equal
<= : less than or equal
== : equal
!= : not equal

BooleanDemo.java

8-July-2002 cse142-07-Decisions © 2002 University of Washington 7

examples

• numeric comparisons are extremely common

if (count == limit) {

messageDialog.warn(“count has reached limit”);

}

• methods can return boolean values too

if (arg.equals(“green”)) {

myColor = Color.green;

} else {

myColor = defaultColor;

}

8-July-2002 cse142-07-Decisions © 2002 University of Washington 8

Compound expressions

• We can combine various logical expressions
together to make one larger expression

if (arg != null && args.equals(“begin”)) {

process the beginning of something …

}

• There are operators for “and”, “or” and “not”
&& : and

|| : or

! : not

8-July-2002 cse142-07-Decisions © 2002 University of Washington 9

examples
• the “not” operator can be handy for clarity in some

cases, but it can also be confusing, so use carefully

if (!ready) {

messageDialog.warn(“system not ready”);

}

• the && and || operators are “shortcut” operators
» they stop evaluation as soon as the logical condition is

satisfied

if (arg != null && arg.equals(“green”)) {

myColor = Color.green;

}

8-July-2002 cse142-07-Decisions © 2002 University of Washington 10

Use braces and parentheses liberally

• Better safe than sorry
» Braces surround a block of code, even one line
» Parentheses surround parts of an expression

if ((a==b) && ((c+d) == e)) {

state.advance(a);

} else {

state.retreat(e);

}

8-July-2002 cse142-07-Decisions © 2002 University of Washington 11

multiple cases

• You can chain if statements together to select
one of several possibilities

if (arg.equals(“green”)) {

myColor = Color.green;

} else if (arg.equals(“blue”)) {

myColor = Color.blue;

} else {

myColor = defaultColor;

}

8-July-2002 cse142-07-Decisions © 2002 University of Washington 12

boolean expressions and variables

• If you find yourself doing something like this
if (pageNumber == lastPage) {

allDone = true;

} else {

allDone = false;

}

• there is an easier way
allDone = (pageNumber == lastPage);

boolean variable boolean expression

8-July-2002 cse142-07-Decisions © 2002 University of Washington 13

conditional operator (3 operands)

• If you find yourself doing something like this
if (score < 0) {

color = Color.red;

} else {

color = Color.black;

}

• there is an easier way
color = (score < 0) ? Color.red : Color.black;

variable boolean expression

use this value if expression is true

use this value if expression is false

8-July-2002 cse142-07-Decisions © 2002 University of Washington 14

returning a boolean value

• It is often convenient to return a boolean
expression from a method

public boolean isEmpty() {

return (this.itemCount == 0);

}

itemCount is an instance variable in this example

8-July-2002 cse142-07-Decisions © 2002 University of Washington 15

comparing floating point numbers

• Never, never test for exact equality of two
floating point numbers using ==
» double and float values are approximate values

which may vary slightly way out to the right of the
decimal point

» 1.00000000000000000000000001
» 1.00000000000000000000000002
» Are they equal?

NO. But probably close enough for our purposes ...

8-July-2002 cse142-07-Decisions © 2002 University of Washington 16

floating point compare

• check for exceeding a limit
if (xVal >= maxX) { …

if (yVal < 0.0) { …

• check for difference less than some small amount
double epsilon = 0.00001;

if (Math.abs(xVal-xGoal) < epsilon) {...

8-July-2002 cse142-07-Decisions © 2002 University of Washington 17

switch statement

switch (integral type) {

case value1 : {
statement1;
break; //Break out of switch

}
case value2 : {

statement2;
break;

}
default : {

statement3;
}

}

there are lots of limitations and potential bugs in using this, so be careful!
8-July-2002 cse142-07-Decisions © 2002 University of Washington 18

comparing objects for “equality”

• so far we’ve been comparing mostly simple values

if (count == limit) {

messageDialog.warn(“count has reached limit”);

}

• but the situation is more complex with objects
» when are two String objects equal?
» when are two Dog objects equal?

StringEquals.java, Dog.java

The values in the two
objects are the same ... … but the objects themselves are

two different chunks of memory

8-July-2002 cse142-07-Decisions © 2002 University of Washington 20

== operator tests for literal equality

• Two object references are == if they point to
exactly the same object

textA

textB

textD

“Java”

“Java”

variables objects

These two variables are ==
because they point to the
same object in memory

This variable points to a different
object in memory, even though
the content is the same

8-July-2002 cse142-07-Decisions © 2002 University of Washington 21

equals() method tests for content equality

• Two object references are equal if the content
is deemed to be the same

textA

textB

textD

“Java”

“Java”

variables objects

These two variables are
considered equal
because the strings that
they point to contain the
same characters

