
CSE 142 - Su 02
Homework 7
Assigned: Wednesday, August 14
Due: Wednesday, August 21, BEFORE MIDNIGHT

This file describes the programming project. There are other files that
describe the practice problems and the graded problems.

This project is based on the King County Metro Transit bus system. In this
homework project, you will write a Java class that we can use to create visual
displays of the buses and their locations, using real-time data or using a
local copy of a small set of the data.

As provided to you, the BusDisplay program cannot be run because it is missing
the class to build the map symbols indicating a bus location. Your task is to
write the TransitBusSymbol class that is used to display a bus symbol on the
map.

There are two programs involved in this project. One program is the one that
draws the map. Your new class is part of this program. The map drawing
program can read a disk file for its data, so you can do all the development
you need without connecting to the net. The other program is used when you
want to display realtime data off the Internet. This program is completely
written, you don't need to do anything with it except start it running.

** Source of the data **

There is a file (UDistrict.txt) containing a snapshot of data that you can use
during development. To run the display program using this data, use the batch
command file runBusDisplayFile.bat. This program is a little more difficult
to run from BlueJ, because BlueJ does not necessarily start in the right
directory, so I suggest that you use BlueJ as an editor and compiler if you
like, but that you run the program using the batch file. Just double-click
the file to start the program running.

When you want to connect to the network, there is a program called BusRcv that
you can run on your machine to connect to the actual bus information server,
available at sdd.its.washington.edu, port 8412. When you are ready to use it,
make sure that you are connected to the Internet, and then run BusRcv by
double-clicking on runBusRcvNet.bat. After BusRcv is running, then start
BusDisplay running by double-clicking on runBusDisplayRcv.bat. You only need
to start BusRcv once and then leave it running.

** Destination of the data **

BusDisplay.java is the main program. It contains the "static void main(String
[] arg)" method where Java starts running the program. This method creates a
new TransitMap object and then starts reading bus events from the input
stream, either a network connection or a local disk file. BusDisplay.java is
complete as provided to you and does not need to be modified.

* TransitMap.java *

This class loads the image file that is the University District map, creates
the graphics window to show it in, and then listens for updates to bus
positions and manages the resulting list of buses. When new TransitBusEvents
are reported by BusDisplay, TransitMap checks to see if it already has a
symbol for this bus. If necessary, it creates a new TransitBusSymbol object
(that's you) and tells the symbol where it should be on the map.

* TransitBusSymbol.java *

TransitBusSymbol is the primary class of interest in this assignment. A
TransitBusSymbol object takes information about a bus and its location, and
creates a little display symbol for the map. The symbol is clickable, and so
the object also can do things in response to being clicked. Your job
(described below) is to implement a functioning TransitBusSymbol class.

* BusReader.java *

This class reads and interprets events from the network or from a disk file.
This class is complete as written and does not need to be modified.

++ Project Requirements ++

1. Download the cse142-hw7.zip file and unzip it. The project skeleton is in
the directory hw142\hw7. Your task is to create TransitBusSymbol.java to
provide the required capabilities described below. The documentation for the
code in the hw7 directory is in subdirectory doc. Double-click on the file
index.html to get started. Among other things, you may want to look at
methods pixelX(lon) and pixelY(lat) in class TransitMap, since this is how
your symbol figures out where to place itself on the map image.

The rest of the code I am providing to you for this project is bundled up in
the file hw7.jar. The documentation for the files in hw7.jar is in
subdirectory doc-hw7. Double-click on the file index.html to get started.
Among other things, you will want to look at hw7.ClickableProp, since this is
an interface that your symbol class must implement.

2. In order to compile the program with BlueJ, you need to tell BlueJ about
the jar file, just like we did for the hw6.jar file. In BlueJ, select menu
item Tools->Preferences, then the Libraries tab. Next to the area labeled
"User Libraries" there is a button "Add". Click on this button, then navigate
to the hw7.jar file that you just received. Select it and close up the
dialog, then restart BlueJ.

After you have set the library file and restarted BlueJ, you should be able to
edit and compile the code. Of course, it won't compile correctly until you
write TransitBusSymbol.

If you are using JEdit or some other development environment, be sure to tell
it where the hw7.jar file is so that it can do the compilation.

3. Once you have written the TransitBusSymbol class, you can compile it and
start running the program. To run the BusDisplay program and show a map based
on the little snapshot of data on disk, you should use the batch command file
runBusDisplayFile.bat. Double-click on the file and it will start the
program, create a map window, and add a bunch of buses to the display. The
display should look like the one provided on the homework assignment page.

If you expand the size of the window by dragging it in the lower right corner,
but the map doesn't expand to fill the window, try clicking in the window.
That should cause the window to be redrawn completely.

To stop the program, close the map display window by clicking the close box in
the upper right corner, then highlight the DOS command window and press any
key.

4. Your task is to implement the TransitBusSymbol class. The javadoc comments
for TransitBusSymbol methods are given in TransitBusSymbolComments.txt. The
specific implementation requirements are as follows.

4a. The TransitBusSymbol class implements the ClickableProp interface. This
interface extends the uwcse.animation.Prop interface. The specific methods
that they require are described below.

4b. Implement a constructor for the TransitBusSymbol class that takes a single
TransitBusEvent as a parameter variable.

Initialize an instance variable for the display window to null, since your
symbols hasn't been added to a window yet. Remember the vehicle id number,
lat, lon, and route information from the TransitBusEvent object by storing
them in instance variables, either individually or as part of a TransitBus
object.

Create and remember the various shapes (Rectangle, TextShape) from the UWCSE
library that you will use to display this bus on the map. At minimum, you
should have a plain rectangle for a background, a TextShape for the route
number, and a TextShape for the vehicle ID number. You might want to save
some offsets here to tell you where each of the text elements go relative to
the background rectangle. Feel free to get fancier with this once you get the
basic programming running correctly.

Initialize any other instance variables that you need in the other methods.

Information about the TransitBusEvent passed to the constructor is available
in the doc-hw7 directory, along with information about TransitBus if you would
like to use that to store information about your bus.

4c. Implement the method addTo(GWindow gw). This method is specified by the
uwcse.animation.Prop interface.

If your symbol has already been added to a window (ie, the instance variable
that remembers the window already has a non-null value) then just return and
do nothing.

If your symbol has not yet been added to the window, then store the window
reference provided to you (ie, gw), and add all the shapes of your symbol to
that window. Use the GWindow method window.add(shape) to do this. Remember,
the shape objects were created in your constructor, you are just telling the
window about them at this point. The first shape that you add is the
background rectangle, then the following shapes are drawn on top of that.

4d. Implement the method removeFromWindow(). This method is specified by the
uwcse.animation.Prop interface.

If your symbol is not in a window (ie, the instance variable that remembers
the window has a null value) then just return and do nothing.

If your symbol is in a window, then use the GWindow method window.remove
(shape) to remove all of your shapes from the window. You still have
references to these shapes in your instance variables, you are just telling
the window not to bother displaying them at this time.

Set the instance variable you are using to remember the window back to null to
indicate "no current window".

4e. Implement the method intersects(Shape other). This method is specified
by the ClickableProp interface.

This method uses the Shape method shape.intersects(other) to decide if there
is an intersection between the other Shape and our background shape, assuming
that the background Shape covers all the area that the rest of this symbol

might fall onto. Return true if the given Shape intersects us, else false.

4f. Implement the method setVehicleLocation(TransitMap m,double lat,double
lon).

This method sets the Location of the TransitBus we are tracking, based on new
latitude and longitude values. Move the symbol to that location on the map by
moving all of the Shapes to their new locations. The supplied TransitMap
object has methods pixelX(lon) and pixelY(lat) that can convert longitude and
latitude into the proper x,y pixel coordinates for you. Use the Shape method
shape.moveTo(x,y) to actually move each shape.

Remember to save the new lon/lat location in whatever instance variables you
are using, and also move all the shapes in your symbol to the corresponding
pixelX/pixelY spot on the map. Also remember that some of the shapes in your
symbol are probably offset a little from the others (for example to put the
route number and vehicle number in different parts of the symbol) and so you
don't necessarily want to move them all to exactly the same pixelX and pixelY
values. Some small offsets between the various elements may be required.

4g. Implement the method doClickAction(). This method is specified by the
ClickableProp interface.

This method is called whenever this symbol is clicked on. The method prints
out some information about the bus this symbol represents. Using
System.out.println, you should print out the bus vehicle id number, the route,
and the lat/lon location. Sample output is:

Sym: hw7.TransitBus 2427 at (47.666431, -122.317397) on route 67
Sym: hw7.TransitBus 1003 at (47.664906, -122.314218) on route 70

Your output should resemble this, but does not have to be exactly the same.
This output was created using the toString methods of TransitBusSymbol and
TransitBus.

4h. Depending on how you implement the doClickAction() printout, you may want
to implement method toString() to print information about this object, perhaps
calling the toString() method of a TransitBus.

5. Test your new class using the local data file and running the program
using runBusDisplayFile.bat. The resulting map should look like the example
posted.

6. Once the program is displaying shapes, make sure that they are in the
right places on the map and that the route number and vehicle id numbers are
displayed correctly.

7. To run the program with real data, you can use runBusRcvNet.bat, followed
by runBusDisplayRcv.bat. Your map should be updated in real time with the
actual bus location information.

