
CSE 142 - Su 02
Assigned: Wednesday, August 7
Due: Wednesday, August 14, BEFORE MIDNIGHT

** Homework 6 Programming Project **

This project is based on the King County Metro Transit bus system. As you
know, Metro and the University of Washington make quite a bit of information
about the buses and their locations available in real-time over the network.
In this homework project, you will write a Java class that we can use to
create reports about the buses and the routes they are on, using real-time
data or using a simple local copy of a small set of the data.

As provided to you, the Metro program runs and collects data about the the bus
system, but doesn't have any way to generate reports based on that data.

This is typical in the real world, by the way. People often get excited about
collecting data from a real-time source and write an elaborate program to
collect it, but then neglect to provide any way for a user to see a report of
the data.

Your role in this homework project is to write a TransitReporter class that
can get a snapshot of the buses that are currently defined in the
TransistSystem and then print out a couple of different reports about them
depending on user commands.

There are two programs involved in this project. One program is the source of
the data, the other program is the Metro program that reads the data. The
source program is completely written, you don't need to do anything with it
except start it running.

** Source of the data **

There is a simple program called BusXmt that you can run on your machine to be
a local source of bus location data. This is useful for two reasons. First,
you don't need to be connected to the network in order to run. Second, there
is a controlled script that governs the data that the BusXmt program sends
out, and so you can check your program against known data before you turn it
loose on the real Metro King County bus system.

To run BusXmt, use the batch file runBusXmtShort.bat. This will start a data
server running on your machine. Once you've started it, you can leave this
program running continuously. The output from this program looks like this
when it first starts up:

>java -classpath hw6.jar bus.BusXmt bus/ShortScript.txt
Usage: BusXmt filename [requestPort]

filename is the file that contains position update records.
See BusRcv for information about the format.
requestPort defaults to 8412 if not specified.

NOTE: This program runs until terminated with control-C.

BusXmt listening for connections on port 8412
BusXmt transmitting data from script file bus/ShortScript.txt

The other possible source of data for your program is the actual bus
information server, available at sdd.its.washington.edu, port 8412. You don't

need to do anything in order to start this server running; it is up all the
time. When you are ready to use it, make sure that you are connected to the
Internet, and then run the Metro program with a net connection as described
below.

** Destination of the data **

Metro.java is the main program. It contains the "static void main(String[]
arg)" method where Java starts running the program. This method creates a new
TransitSystem object and a new TransitReporter (that's you), and then tells
the TransitSystem to start listening for information about the buses. After
the system is started, Metro prompts the user for commands, and passes each
command on to the TransitReporter for action.

Metro.java is complete as provided to you and does not need to be modified.
Most of the code for the Metro program is stored in the archive file hw6.jar
and does not need to be modified.

* TransitSystem.java *

This class listens for updates to bus positions and manages the resulting list
of buses. Your TransitReporter can ask the TransitSystem for a list of known
buses at any time. TransitSystem.class is part of the hw6.jar and does not
need to be modified.

* TransitReporter.java *

TransitReporter is the primary class of interest in this assignment. A
TransitReporter object interprets commands from the user and prints out the
requested reports. Your job (described below) is to implement a functioning
TransitReporter class.

* CompareByRoute.java *

This Comparator implements a method to compare two TransitBus objects and
identify which one has the lower route number. It is provided so that you can
use Collections.sort(...) to sort a List of TransitBuses by route number,
rather than vehicle identification number. This class is complete as written
and does not need to be modified.

++ Project Requirements ++

1. Download the cse142-hw6.zip file and unzip it. The project skeleton is in
the directory hw142\hw6. Your task is to open the project and update
TransitReporter.java to add the required capabilities described below.

Most of the code I am providing to you for this project is bundled up in the
file hw6.jar. The documentation for the files in hw6.jar is in subdirectory
hw6-doc. Double-click on the file index.html to get started. One thing you
may want to look at is method getBusList() in class TransitSystem, since this
is the method you call to get a current list of buses.

2. Before you run the Metro program to generate reports, you need to start
the local data server program (or use the remote server and get the data from
the Internet). To run the local data server, use the batch file
runBusXmtShort.bat by double clicking or running it from a command window.

3. To run the Metro program and generate reports, you can use BlueJ if you
like, or you can use any other program editor and compiler combination. I have
provided simple batch files that compile and run this project outside of
BlueJ.

In order to run the program from BlueJ, you need to tell BlueJ about the jar
file, just like we did a month ago for the uwcse library file. In BlueJ,
select menu item Tools->Preferences, then the Libraries tab. Next to the area
labeled "User Libraries" there is a button "Add". Click on this button, then
navigate to the hw6.jar file that you just received. Select it and close up
the dialog, then restart BlueJ.

After you have set the library file and restarted BlueJ, just right-click on
the Metro class and select the main method. This will start the program
running and it will produce some printed output, then wait for your command.
If you want to connect to the remote server, you have to specify the name of
the remote server when you start the program. You do this by putting it
between the curly braces that BlueJ shows when you call the main method. So
you would specify {"sdd.its.washington.edu"} in order to run with remote data
in BlueJ.

If you run the program from the command line using runMetroLocal.bat or
runMetroNet.bat, the proper arguments are specified in the batch file, and the
program will print the output to the screen window.

4. All the new methods that you will write are to be added to
TransitReporter.java. The javadoc comments for TransitReporter methods are
given in TransitReporterComments.txt. The specific implementation
requirements are as follows.

4a. Implement a constructor for the TransitReporter class. The constructor
initializes the instance variables. It should keep a reference to the
TransitSystem so that it can ask for a List of buses later on, and should also
initialize an instance variable for the List of buses and create and remember
a new CompareByRoute object for later use.

4b. Update the doCommand method so that it can do something more than just
recognize the exit command. This requires that you rewrite the "if" statement
so that it can recognize several different commands and call the appropriate
private method for each command, as described below.

4c. Write the doHelp method. This method is called from doCommand when the
user enters the "help" command. The method prints a simple list of valid
commands on the console and then returns to doCommand.

4d. Write the doSnap method. This method is called from doCommand when the
user enters the "snap" command to request that a new data snapshot be
retrieved from the TransitSystem. This is the point at which you use the
reference to the TransitSystem that was saved by the constructor in an
instance variable. You call the TransitSystem method getBusList(), and it
returns to you an ArrayList containing one TransitBus object for each bus
currently known to be running. The doSnap method updates an instance variable
with a pointer to this ArrayList of buses, prints out a brief message about
the number of buses (ie, the size of the List) and then returns to doCommand.

4e. Write the doBus method. This method is called from doCommand when the
user enters the "bus" command to request that a list of buses in the current
snapshot be displayed.

You need to make sure that there is a valid snapshot before doing this
command. If there is no snapshot, get one before doing the following
printout. If there is a snapshot, don't get another one, just use what you've
got.

Sort the list using the sort method in the java.util.Collections class that

sorts the specified list into ascending order, according to the natural
ordering of its elements. This will sort the list according to the vehicle id
number. Then go through the entire List and print out a line for each bus.
You can use simple calls to System.out.println(...) for this, since the
toString() method of TransitBus provides a good description of a bus.
Remember that the documentation for TransitBus is included in the hw6-doc
subdirectory.

After you print one line for each bus, print a summary line that tells how
many buses are in the system.

4f. Write the doRoute method. This method is called from doCommand when the
user enters the "route" command to request that a list of all the known routes
be displayed.

As with the bus command, you need to make sure that there is a valid snapshot
before doing this command. If there is no snapshot, get one before doing the
following printout. If there is a snapshot, don't get another one, just use
what you've got.

Sort the list using the sort method in the java.util.Collections class that
sorts the specified list according to the order induced by the specified
comparator. Use the comparator object that you created in the constructor for
this purpose. This will sort the list according to the route number.

Then go through the entire List and print out a line for each route. You need
to be careful how you do this, and you need a set of nested while loops to
implement it. The outer loop executes once per route. The inner loop counts
up all the buses on a particular route. One implementation would use the
number of buses already processed as the control variable for both the inner
and outer loops, and would increment the number every time we counted a bus as
being on a route.

After you print one line for each route, print a summary line that tells how
many routes are active in the system.

4g. Write the doSummary method. Print a line telling how many buses and how
many routes. This method needs the same information as was generated in
doRoute, so you may want to design a separate little helper method that can
count the routes and optionally print a line for each one. This helper could
be called from doRoute or doSummary.

5. Test your new methods after you get each one written. You should use the
local data server (see step 2) during checkout so that you there are only a
few buses being reported and you can check your code easily. Remember that
you can leave the local data server running the whole time you are working.
The Metro program connects to the server when it starts, and then disconnects
when it exits. Don't start multiple copies of the data server; you don't need
them.

A sample run using the runBusXmtShort.bat data server looks like this:

>java -classpath .;hw6.jar Metro localhost 8412
Program arguments: hostname portnumber
hostname : localhost
portnumber : 8412

Type help for information about running this program.

? snap
Snapshot captured data for 6 buses.
? help

This program accepts data from a source of Transit Bus position data and
makes it available for analysis by the user of the program. Use the snap
command to take a snapshot of the current state of the bus system, then
use the other commands to print information based on that snapshot.

The following commands are available:
bus list all the buses in the most recent snapshot
exit shut down the program.
help print this message
quit same as exit
route list all the routes in the most recent snapshot
snap take a new snapshot of the buses in the system
stop same as exit
summary print a brief summary of the most recent snapshot
? bus
hw6.TransitBus 1142 at (0.0, 0.0) on route 74
hw6.TransitBus 2337 at (0.0, 0.0) on route 71
hw6.TransitBus 2364 at (0.0, 0.0) on route 0
hw6.TransitBus 4012 at (47.508509, -122.253559) on route 7
hw6.TransitBus 4014 at (47.601486, -122.329767) on route 7
hw6.TransitBus 5101 at (47.53381, -122.269995) on route 7
6 buses counted
? route
Route 0 has 1 buses assigned.
Route 7 has 3 buses assigned.
Route 71 has 1 buses assigned.
Route 74 has 1 buses assigned.
4 routes counted.
? summary
6 buses on 4 routes.
? exit

6. After you get your program running at least partially, you might want to
run it using real data from the real Metro system. To do that, you specify
the name of the server host in the arguments to the program. The name of the
host is "sdd.its.washington.edu". You can specify that in the argument list
for main in BlueJ, or you can just double click on the batch file
runMetroNet.bat and it will specify it for you. When you are connected to the
real data server over the Internet, you can do repeated snap commands and see
how the number of buses reported grows until you have a list of all the Metro
buses running at the time. There are several hundred buses at most times of
the day.

A sample run using runMetroNet.bat to connect to the real data server looks
like this:

>java -classpath .;hw6.jar Metro sdd.its.washington.edu 8412
Program arguments: hostname portnumber
hostname : sdd.its.washington.edu
portnumber : 8412

Type help for information about running this program.

? snap
Snapshot captured data for 233 buses.
? summary
233 buses on 80 routes.
? exit
