
CSE 142 - Su 02
Homework 5
Assigned: Wednesday, July 31
Due: Wednesday, August 7, BEFORE MIDNIGHT

** General Comments about the Homework **

All homework is turned in electronically. Go to the class web site and use
the link on the homework page to do the turnin. Don't be late! Late
homeworks will not be accepted.

This file describes the Homework 5 Programming Project. There are other files
that describe the practice problems and the graded problems.

** Homework 5 Programming Project **

This project is based on the King County Metro Transit bus system. As you saw
in class, Metro and the University of Washington make quite a bit of
information about the buses and their locations available in real-time. In
this homework project, you will be defining Java classes that we can use to
track and manipulate that information.

Your task is to implement two new classes and upgrade another.

++ List of classes ++

As provided to you, homework 5 does not work because it is missing two key
classes which you will implement. The overall concept of the program is that
it creates a number of TransitBus objects, each representing one bus in the
TransitSystem, and then it analyzes the list of buses to find out various
interesting tidbits such as which bus is closest to a Landmark like the UW
HUB, how many route 7 buses are running, and so on. Each TransitBus has a
Vehicle Identification Number (vin), a route number, and a Location. Each
Landmark has a Location and a name.

The files involved in this program are the following.

* Metro.java *

This is the main program. It contains the "static void main(String[] arg)"
method where Java starts running the program. This method creates a new
TransitSystem object and then adds several TransitBus objects to the system.
Then it uses TransitSystem methods to process the list of buses.

Metro.java is complete as written. During development, you may want to put
comment characters "//" in front of the lines that use parts of the code that
you haven't written yet. For example you could hide all the lines that refer
to Landmark objects (the second half of the main method) until after you have
finished your TransitBus class and gotten that working.

* TransitSystem.java *

This class manages the list of buses and performs various analysis actions.
The constructor is provided to you, as well as a few methods to add
TransitBuses to the list and print the list. Your job (described below) is to
write additional methods to process the list.

* TransitBus.java *

TransitBus is the primary class of interest in this program. TransitBus
objects have a unique vehicle identification number, they have a current

Location, and they are assigned to a route. The Vehicle and LocatedVehicle
classes implement some of these capabilities. Your job (described below) is
to implement a functioning TransitBus class.

* Landmark.java *

A Landmark is an object that implements the Locatable interface and has a
name. There is an example of how to do this provided in LocatedVehicle, and
your implementation of LandMark can follow that example very closely. Your
job (described below) is to implement a functioning Landmark class.

* Locatable.java *

This file defines the Locatable interface. Any class that wants to provide
the capability of being located on the surface of the Earth needs to implement
this class. Locations are defined in terms of latitude and longitude. Any
class that implements Locatable must have a reference to a Location object,
and provide some methods for accessing and using that Location. The required
methods are defined in this Locatable interface. You can look at
LocatedVehicle.java for an example of how to implement this interface. No
change is needed in this class.

* LocatedVehicle.java *

This file defines the LocatedVehicle class that implements the Locatable
interface. In order to do this, it extends the Vehicle class and adds the
methods that are required by the Locatable interface. Read this class
carefully, because the Landmark class that you must implement is very similar
to LocatedVehicle. No change is need in this class.

* Vehicle *

This file defines the basic Vehicle class. This is where the Vehicle
Identification Number is defined and stored. This class also implements the
Comparable interface, which makes it possible to sort Vehicles (and all
subclasses of Vehicle) by vehicle ID number. No change is needed in this
class.

* Location.java *

This file defines the Location class that manages the details associated with
storing a location on the face of the Earth in terms of latitude and
longitude. There is a simple constructor, and a couple of methods to update
the actual position after the object is created. This is also a method that
calculates the distance on the surface of the Earth between this Location
object and any other Location object. This method is used in implementations
of the distanceTo(Location other) method that is required in the Locatable
interface. Again, refer to LocatedVehicle.java for an example of how to do
this. No change is needed in this class.

++ Project Requirements ++

1. Download the cse142-hw5.zip file and unzip it. The project skeleton is in
the directory hw142\hw5. Your task is to open the project and create two new
class files (TransitBus.java and Landmark.java) and update another class file
to add capabilities (TransitSystem.java).

2. You can use BlueJ if you like, or you can use any other program editor and
compiler combination. I have provided simple batch files that compile and run
this project outside of BlueJ. In order to run the program from inside BlueJ,
just right-click on the Metro class and select the main method. This will

start the program running and it will produce some printed output. If you run
the program from the command line using runMetro.bat, it will print the output
to the screen window.

3. There are examples to guide you in the implementation of required features.
The TransitBus class is a simple extension of the LocatedVehicle class. The
Landmark class is very similar to the LocatedVehicle class. Landmark
implements the Locatable interface and so does LocatedVehicle. Landmark does
not extend any other class (other than Object). And finally, the methods that
you should add to TransitSystem are similar to the printBusList() method that
is provided.

4. The specific implementation requirements are as follows.

4a. Write a new class called TransitBus that extends LocatedVehicle and adds
the capability of storing a route number for each bus. There is not much code
required to do this.

You need to have a constructor for the TransitBus class that takes an integer
vehicle identification number, a double latitude value,a double longitude
value, and an integer route number. Your constructor should call the
constructor of its superclass (namely LocatedVehicle) using the syntax "super
(vin, lat, lon)" that I showed in class on Monday July 29. After doing that,
your constructor also needs to save the route number in a private instance
variable defined in TransitBus.

For TransitBus you also need to write a getRoute() method that returns the
route number as an integer, and a setRoute method that takes a new integer
route number as a parameter and updates the instance variable in the
TransitBus object.

The javadoc comments for this class are given in TransitBus.txt.

4b. Write a new class called Landmark that implements the Locatable interface
and also stores a name for this particular Landmark. There is not much code
required to do this.

You need to have a constructor that takes a String name, a double latitude and
a double longitude. The constructor stores the name of the Landmark in a
private String instance variable, and also creates a new Location(lat,lon) and
stores a reference to that in a private Location instance variable. The class
must implement all the methods of the Locatable interface. Refer to
LocatedVehicle for examples of exactly how to do this.

The javadoc comments for this class are given in Landmark.txt.

4c. Update the methods in the TransitSystem class so that all the functions
needed by the main method in Metro.java are satisfied.

You need to implement printBusOnRouteList, findClosestBus, and
findClosestBusOnRoute. The comments describing these methods are given in
TransitSystem.txt.

5. There is a batch file named makeDoc.bat that will run the javadoc tool for
you and generate your program documentation in subdirectory doc. You might
want to run it and look at the output, starting with index.html. The comments
in your code are the source for these web pages.

6. There is a batch file names runMetro.bat that will run the program for
you. The output will be something like this when the program is running
correctly:

C:\home\finson\cse142\hw5>java -classpath . Metro

The buses currently in the system are:
TransitBus: vin: 4000
TransitBus: vin: 3227
TransitBus: vin: 4106
TransitBus: vin: 4010
TransitBus: vin: 4037
TransitBus: vin: 3501

The buses currently on route 43 are:
TransitBus: vin: 4000
TransitBus: vin: 4010

The bus closest to the Hub is: TransitBus: vin: 4037

The route 43 bus closest to the Hub is: TransitBus: vin: 4010

C:\home\finson\cse142\hw5>pause
Press any key to continue . . .

