
1

7/17/2001 (c) 2001, University of Washington 155

CSE 142 Summer 2001

Designing Classes & 
Introduction to Collections

7/17/2001 (c) 2001, University of Washington 156

Introduction
• Quick review

• Objects = collection of data and methods

• Methods as operational abstractions

• Constructors and initialization

• Today
• Designing classes

• Relationship between classes

• Introduction to collections
• Class Object and casting

7/17/2001 (c) 2001, University of Washington 157

Analysis
• What objects do these names refer to?

• Itchy, Tom, Mickey

• Ronald, George, Bill, George Jr.

• Elvis, John, Janis, Jimi 

• Particular instances (concrete objects) vs. abstract concepts
• Particulars (objects) vs. universals (classes)

7/17/2001 (c) 2001, University of Washington 158

An Example Domain
• A music collection catalog.  Start with the compact disc, what 

are its properties?

7/17/2001 (c) 2001, University of Washington 159

Music Collection: Relationships
• Show the relationships between the following things:

• MusicCollection, CompactDisc, Song

7/17/2001 (c) 2001, University of Washington 160

Representing a Song
• What are the instance variables?  Methods?

public class Song {
private int seconds; // song length
private String title; // song title
/** Construct new song … */
public Song (String title, int length) { … }
/** get Song title */
public String getTitle( ){ return this.title; }
/** get Song time */
public int getTime( ) { return this.seconds; }

}



2

7/17/2001 (c) 2001, University of Washington 161

Using Songs
• Let's create a new Song:

Song aSong = new Song(“Imagine”, 175);

• Getting information about the song:

System.out.println(“Time of ” + aSong.getTitle( ) + “ is ” + aSong.getTime( ) );

• How do we combine several of these to represent 
information about a CD?

7/17/2001 (c) 2001, University of Washington 162

Collections in the Real World
• Think about:

• dictionary

• class list

• deck of cards
• library

• These things are all collections.
• Ordered collections vs. Unordered collections
• How can we represent the songs on a CD?

7/17/2001 (c) 2001, University of Washington 163

An Ordered Collection: ArrayList
• ArrayList is a Java class that specializes in representing an ordered 

collection of things. Here's part of its interface:
public class ArrayList {

// return the size of the collection
public int size( );

// return the object at the given index (numbered from 0)
public Object get(int index);

// Add the given object to the end of the collection
public void add(Object o);

// Remove the object at the given position from the collection.
public Object remove(int index);

}

• New: class Object – means any kind of object at all

7/17/2001 (c) 2001, University of Washington 164

Using ArrayLists (1)
• Adding things:

ArrayList names = new ArrayList ( );
names.add("Billy");
names.add("Susan");
names.add("Frodo");

• Getting the size:

int numberOfNames = names.size( );

• Removing things:

names.remove("Billy");

7/17/2001 (c) 2001, University of Washington 165

Using ArrayLists (2)
• Accessing items. ArrayLists provide indexed access.  We 

can ask for the n-th item of the list.

ArrayList names = new ArrayList ( );
names.add("Billy");
names.add("Susan");

String aName = names.get(0);  

• What's wrong with this?  (Hint, look at the signature for the get( ) 
method.)

7/17/2001 (c) 2001, University of Washington 166

The class Object
• The return type of the method get() is Object.
• Think of Object as Java's way of saying "any type".
• All classes in Java (including the ones we write) have an 

"is-a" relationship to Object.  In other words:
• every String is an Object
• every Rectangle is an Object

• every Vector is an Object

• The reverse is not, in general, true!



3

7/17/2001 (c) 2001, University of Washington 167

Making False Claims
• We can say…

Object someObject = new Song(. . .);

• … because every Song is an Object.

• Going back to our example:

ArrayList names = new ArrayList ( );
names.add("Billy");
names.add("Susan");

String aName = names.get(0);  

• We are claiming that an Object is a String, which is not in general 
true!

7/17/2001 (c) 2001, University of Washington 168

Making Promises: Casting
• It looks like we're stuck.  We can add things to the collection,

but we can't really get them back out!
• The solution is to make a promise.

• We know that we've only placed String objects into the collection, so 
we'll promise the compiler that the thing coming back out of the
collection is actually a String:

String aName = (String)names.get(0);

• This promise is called a cast.

7/17/2001 (c) 2001, University of Washington 169

Casting
• In general a cast looks like this:

(<class-name>)<expression>

• For example:
String aName = (String)names.get(0);

• Casting does not change the type of the object: It is a promise that the 
object really is of another type.

• We can abuse casting, but will be caught at runtime:
Vector things = new Vector( );
things.add(new Rectangle( ));
Song aSong = (Song)things.get(0);        // Run time error!!

7/17/2001 (c) 2001, University of Washington 170

Building a CompactDisc class
• Let's build a compact disc class now.  
• Let's say a compact disc object should understand the 

following messages:  
• get a song (by index)
• add a song

• get the title of the CD

• get the total running time of the CD

7/17/2001 (c) 2001, University of Washington 171

A CompactDisc class in Java
• Try it yourself.  What are the instance variables?  Methods?


