
1

8/13/2001 (c) 2001, University of Washington 330

CSE 142 Summer 2001

Searching & Sorting

8/13/2001 (c) 2001, University of Washington 331

Introduction
• Review:

• Implementing collection classes – StringList

• Today:
• Linear & binary search
• Maintaining a sorted list

8/13/2001 (c) 2001, University of Washington 332

Review – class StringList
• Operations

class StringList { // a list of strings
StringList(int capacity); // create new StringList with given capacity
boolean isEmpty(); // = “this StringList is empty”
boolean isFull(); // = “this StringList is full”
int size(); // = # of Strings in this StringList
boolean add(String str); // add str to this StringList, result true if success
int contains(String str); // = location of str in list, or –1 if not present
String get(int pos); // return String at given position
String remove(int pos); // return String at given position and remove

// it from this StringList

8/13/2001 (c) 2001, University of Washington 333

StringList Representation
• Underlying Representation is an array of Strings plus a “size”

field to keep track of how much of the array is in use
class StringList { // a list of strings

// instance variables
private String[] strings; // Strings in this StringList are stored in
private int size; // strings[0] through strings[size-1]
…

}

8/13/2001 (c) 2001, University of Washington 334

Linear Search
• Locate a string in the list

/** Return location of str in the list, or –1 if not present */
public int contains(String str) {

}

8/13/2001 (c) 2001, University of Washington 335

Can we do better?
• How much work does linear search do?
• Can we do it faster?

• No, if we don’t know anything about the order of elements in the list

• Yes, if the list is sorted

2

8/13/2001 (c) 2001, University of Washington 336

Binary Search – Informal
• Idea

• Look in the middle of the list
• If we haven’t found what we’re looking for, we can ignore half of the

list and look at the other half

• Precondition: The list must be sorted for this to work
• We’ll assume strings[0] <= strings[1] <= … <= strings[size-1]
• (To save a bit of writing, we’ll write strings[…] instead of

this.strings[…] – works just fine)

8/13/2001 (c) 2001, University of Washington 337

Binary Search – Goal
• Goal (more formally)

• Want to find the midpoint of the list such that everything to the left
is <= the string we’re searching for and everything to the right is >.

• Picture:

8/13/2001 (c) 2001, University of Washington 338

Binary Search – Strategy
• On a typical iteration, we have

• Idea:
• Let mid = (L+R)/2
• If strings[mid] <= str, move L
• If strings[mid] > str, move R

strings <= str ? > str

8/13/2001 (c) 2001, University of Washington 339

Binary Search – Code
/** Return location of str in the list, or –1 if not present */
public int contains(String str) {

while (______________________________) {

}

}

8/13/2001 (c) 2001, University of Washington 340

Binary Search – Test
• Invent some data, try the algorithm

8/13/2001 (c) 2001, University of Washington 341

Binary Search – Test

3

8/13/2001 (c) 2001, University of Washington 342

Binary Search – Performance
• Is the extra complexity worth it?
• How much work is done to search a list of a given size?
• or, How big a list can be searched with n comparisions?

8/13/2001 (c) 2001, University of Washington 343

Binary & Linear Search Compared
• Linear search: work ~ size
• Binary search: work ~ log2 size
• Graph:

8/13/2001 (c) 2001, University of Washington 344

Sorting
• Great, but this only works if the list is sorted
• When do we need to sort the list?

• Answer: only required to be sorted if we want to do binary search

• Choices
• Keep list sorted at all times
• Sort list before searching

8/13/2001 (c) 2001, University of Washington 345

Maintaining a Sorted List
• Nothing in the client interface changes
• Implementation now relies on list being sorted, so it’s crucial

that we record this information in a comment
class StringList { // a list of strings

// instance variables
private String[] strings; // Strings in this StringList are stored in
private int size; // strings[0] through strings[size-1], and

// the strings are stored in ascending
// order, strings[0] <= strings[1] <= … .

…
}

8/13/2001 (c) 2001, University of Washington 346

Method add
• Only method from original StringList that needs to be changed (true?)

/** Add str to this StringList. Return true if successful, otherwise return false */
public boolean add(String str) {

if (this.size == this.strings.length) {
return false;

}
// find correct location to place str
…
// shift larger elements one position to the right
…
// place str in correct location
…
size++;

}

8/13/2001 (c) 2001, University of Washington 347

Modified method add
• Picture:

4

8/13/2001 (c) 2001, University of Washington 348

Search & Shift
• Observation: We can find the correct insertion point and shift

larger elements to the right in one right-to-left search
• Picture:

8/13/2001 (c) 2001, University of Washington 349

Search/shift code
// Shift all elements larger than str one position to the right. When done,
// strings[pos] is the correct location for str

while (___) {

}
strings[pos] = str;
size++;

8/13/2001 (c) 2001, University of Washington 350

Sorting an Unsorted Array
• What if we didn’t keep the list sorted as elements are added?
• Answer: can apply our shift/search to the existing contents of

the StringList
for (k = 1; k < size; k++) {

// place strings[k] in correct location in strings[0..k-1]
}

• Picture:

• This is insertion sort, a common, simple sorting algorithm

