
1

7/10/2001 (c) 2001, University of Washington 122

CSE 142 Summer 2001

Objects with Data

7/10/2001 (c) 2001, University of Washington 123

Introduction
• Review:

• Classes and instances
• methods, parameters, and arguments

• Today:
• Objects that hold data – instance variables
• Updating object data
• Methods with a result value

7/10/2001 (c) 2001, University of Washington 124

Bank Accounts
• Suppose we wanted to create an object to represent a bank

account (checking or savings)
• What sort of messages (operations) would we want it to be able to

do?
• [new] What sort of information needs to be stored in the bank

account object?

7/10/2001 (c) 2001, University of Washington 125

Bank Accounts
• Design your bank account here

7/10/2001 (c) 2001, University of Washington 126

BankAccount Notes

7/10/2001 (c) 2001, University of Washington 127

Using a Bank Account Object
• Draw the picture

BankAccount checking =
new BankAccount();

checking.deposit(1000.00);
checking.deposit(500.00);
double currentBalance =

checking.getBalance();
System.out.println(currentBalance);

• Picture

2

7/10/2001 (c) 2001, University of Washington 128

Instance Variables
• Fields like “balance” in a BankAccount object are called

instance variables
• Each new instance of the class (object) has its own set

• Pattern for a class declaration (enhanced)
class <class name> {

<instance variable declarations>
<method declarations>

}

7/10/2001 (c) 2001, University of Washington 129

Creating a BankAccount Class
• First attempt:

class BankAccount {
double balance = 0.0; // account balance in dollars
int accountNumber = 0; // account number
String accountName = “” // account owner’s name

/** Deposit money in the account
* @param amount amount of money to add to the account */
public void deposit(double amount) { … }
…

}

• Something slightly bogus: the values given to accountNumber and
accountName – we’ll fix that later

7/10/2001 (c) 2001, University of Washington 130

Value-Returning Methods
• One of the methods in BankAccount is getBalance, which

returns the current balance in the account
class BankAccount {

double balance = 0.0; // account balance in dollars
…
/** Return current account balance
* @return current balance in dollars */
public double getBalance() {

return this.balance;
}
…

}

7/10/2001 (c) 2001, University of Washington 131

Value-Returning Methods: Details
• The type of the value returned appears in the method

declaration
public double getBalance() {

• A method that has a value must execute a return statement
return <expression> ;

This does two things
• Specifies the value that is returned (the <expression>)
• Terminates the method’s execution and returns to the calling

statement immediately

• A value-returning method can be used anywhere an
expression of that type is expected

double currentBalance = checking.getBalance();

7/10/2001 (c) 2001, University of Washington 132

this
• Recall: We select object fields (methods or instance

variables) using a “.”
<object name> . <field name>

• Inside a method, we can refer to fields of the current object
with the keyword this

return this.balance;

• “this.balance” means the instance variable belonging to the current
BankAccount

double checkingBalance = checking.getBalance();
double savingsBalance = savings.getBalance();

7/10/2001 (c) 2001, University of Washington 133

Mystery Explained
• When we were drawing trees and houses, we didn’t use this

explicitly, but we could have.
class Scene {

public void drawScene() {
this.drawHouse(); // the drawHouse method associated with

// this particular Scene instance
this.drawTree(180, 220, …); // etc.
this.drawTree(250, 350, …);

}
…

}

3

7/10/2001 (c) 2001, University of Washington 134

Updating Instance Variables
• What about the account name and number? We’d like to be

able to store a sensible value in these.
/** Store a new name in this BankAccount object
* @param newAccountName the new name of this account
*/
public void setAccountName(String newAccountName) {

this.accountName = newAccountName;
}

• New: assignment statement. Pattern
<existing name> = <expression with new value> // bind name to new value

• Notice the difference from a declaration that creates a new name.
<type> <new name> = <expression>; // creates a new name & binds it

7/10/2001 (c) 2001, University of Washington 135

Deposit
• Update the account balance

/** Deposit money in this account
* @param amount amount of money to deposit in dollars
*/
public void deposit(double amount) {

this.balance = this.balance + amount;
}

• Execution of the assignment statement
(1) Evaluate the expression to the right of =

! All names in the expression must already have a value (why?)
(2) Bind the (existing) name on the left to the new value
• No problem if the name on the left also appears in the expression
• Question: What is the effect of

this.balance = this.balance + 1;

7/10/2001 (c) 2001, University of Washington 136

Summary
• A lot of big ideas here

• Objects containing data – instance variables
• Value-returning (non-void) methods
• return statement
• Assignment statement – updating instance variables

• Still to come
• Initializing objects – constructors
• Hiding object details – public vs private

