
1

7/23/2001 (c) 2001, University of Washington 211

CSE 142 Summer 2001

Assorted Java Topics

7/23/2001 (c) 2001, University of Washington 212

Introduction
• Time to clear up some loose ends and introduce a few useful

small topics
• Today

• A few arithmetic details
• Reference and primitive types

• Declaration, initialization, and assignment

• Static (class) data and methods

• Final – symbolic constants

7/23/2001 (c) 2001, University of Washington 213

Mixed-mode Arithmetic
• We’ve been very informal about integer arithmetic so far
• All arithmetic expressions are either exact (integer) or

approximate (floating-point/double)
• Question: if we mix integer and floating-point values in an

expression, what happens?
• Answer: Calculation is carried out in floating point
• Examples of evaluation

3 + 4 * 5.0 => 3 + (4.0 * 5.0) => 3 + 20.0 => 3.0 + 20.0 => 23.0
(3 + 4) * 5.0 => 7 * 5.0 => 7.0 * 5.0 => 35.0

• Works the same if named values (variables) are used – values are
converted as expression is evaluated, the variables themselves are
not altered

7/23/2001 (c) 2001, University of Washington 214

Numeric casts
• Question: what is the value of the expression

1 / 3

• Answer: _________
• What if we really want to get 0.333333333?
• Answer: Use the cast notation to convert one or both

operands during evaluation
(double) 1 / 3 => 1.0 / 3 => 1.0 / 3.0 => 0.33333333333333

• But be sure you cast before the calculation is done
(double) (1 / 3) => (double) (0) => 0.0

7/23/2001 (c) 2001, University of Washington 215

Increment and Decrement
• It is quite common to increase or decrease the value of a

name by 1
k = k + 1;
n = n – 1;

• Java provides operators to do this more concisely
k++; // means k=k+1;
n--; // means n=n-1;

• Use them if you want; entirely optional for this course
• Style point: we will only use these as isolated statements. Never

combine them with other operators in larger expressions
int sayWhat = n-- - k++ + 3; // awful – a punishable offense

7/23/2001 (c) 2001, University of Washington 216

Types
• Look at these two bindings

int daysPerWeek = 7;
Rectangle rect = new Rectangle();

• Why are these slightly different?
• What’s the story?

2

7/23/2001 (c) 2001, University of Washington 217

Reference & Primitive Types
• A few Java types are “primitive”

int, double, char, boolean, a few others

• Values are individual chunks, have no fields or components

• Exist without having to be allocated with new

• All others are “reference types”
Rectangle, BankAccount, Color

• Instances of some class

• Created by new
• Can have instance variables and methods

• All are special cases of the generic type “Object”

7/23/2001 (c) 2001, University of Washington 218

Does the Distinction Matter?
• Almost never
• Most likely place for it to matter is with collection types

• These are collections of Objects of some sort, not primitive values

• If you really need a collection of, say, ints or doubles, there
are classes available to create appropriate objects: Integer,
Double, etc.

Integer five = new Integer(5); // create Integer object with a 5 in it
int v = five.intValue(); // extract the primitive value from the object
ArrayList list = new ArrayList();
list.add(five); // ok
list.add(5); // can’t do

• Something we probably won’t need to consider further

7/23/2001 (c) 2001, University of Washington 219

Names and Values
• We’ve seen several ways to create names and bind them to

values
int totalThings = 0;
int balance;
balance = 0;
totalThings = totalThings + 1;

• How are these related?
• What is the difference between creating a new name and

updating the value of an old one?

7/23/2001 (c) 2001, University of Washington 220

Declaration
• A new name is created by a declaration

<type> <name> = <expression>; or
<type> <name>;

• If “= <expression>” is present, the name is bound to the value of the
expression. If it not present, … [coming up]

• <name> must not be the same as another name declared in the
same scope

• Declarations can appear almost anywhere in Java (before or in the
middle of a list of statements)

• In a parameter list, <type> <name> also declares a name
public void mangle(int howBadly, Rectangle r) { ... }

7/23/2001 (c) 2001, University of Washington 221

Assignment
• An existing name can be bound to a new value with an

assignment statement
<name> = <expression>;

• <name> must already have been declared

• Can be used to assign an initial value to <name> or update it to a
new value

• Any names that appear in <expression> must already be bound to
values

7/23/2001 (c) 2001, University of Washington 222

Initialization
• If we declare a name without an initial value, what happens?

<type> <name>;

• Depends…
• Instance variables in objects

- Initialized to null if reference type; 0 or false for primitive types
- Generally best to initialize explicitly in a constructor to make your intent clear

• Local names (variables) in methods
- Not defined! Compiler will complain if you attempt to use the name without
assigning it a value first
- Usually best to give an initial value in the declaration unless there’s a good
reason not to

3

7/23/2001 (c) 2001, University of Washington 223

null
• Normally we bind a reference variable to an object when we

declare it
Rectangle rect = new Rectangle(10, 20, 30, 40);

• If we declare an instance variable without binding it, it’s value
is “null” – meaning doesn’t refer to any object

Rectangle notRect;

• If we attempt to reference a field of a null name, we get an
error

• Can explicitly indicate that a reference variable no longer
refers to any object (although we won’t need this often)

rect = null;

7/23/2001 (c) 2001, University of Washington 224

BankAccounts Again
• Problem: Suppose we wish to give each BankAccount a

unique serial number
class BankAccount {

private String accountName; // account holder’s name
private double balance; // account balance
private int accountNumber; // unique account number
…

}

7/23/2001 (c) 2001, University of Washington 225

BankAccount Constructor
• We want the constructor to assign a unique account number

to each newly created account
class BankAccount {

// construct new BankAccount with given name, balance, and unique acct #
public BankAccount(String accountName; double balance) {

this.accountName = accountName;
this.balance = balance;
this.accountNumber = nextAvailableAccountNumber;
nextAvailableAccountNumber ++;

}

• Questions: Where (what) is nextAvailableAccountNumber?
Where is it stored?

7/23/2001 (c) 2001, University of Washington 226

What is nextAvailableAccountNumber?
• Instance variable?

• No – we don’t want one of these per object (class instance)

• Local variable in the constructor?
• No – we need to retain next available value between creation of one

object and the next

• Answer: we need a single copy somewhere, not associated
with any particular object

• Solution: Have one copy that’s associated with class
BankAccount itself, not with particular instances

7/23/2001 (c) 2001, University of Washington 227

static
• A static class variable is one that belongs to the class itself,

not to instances
class BankAccount {

// object instance variables
private String accountName; // account holder’s name
private double balance; // account balance
private int accountNumber; // unique account number
// class variables
static private int nextAvailableAccountNumber = 1; // next available acct #

• Static variables are created when the program starts
• Happens before any instances of the class are created (by new)
• Typically give an initial value in the declaration

7/23/2001 (c) 2001, University of Washington 228

BankAccount Constructor
• Now we’re all set

class BankAccount {
// construct new BankAccount with given name, balance, and unique acct #
public BankAccount(String accountName; double balance) {

this.accountName = accountName;
this.balance = balance;
this.accountNumber = BankAccount.nextAvailableAccountNumber;
BankAccount.nextAvailableAccountNumber ++;

}

• Can refer to static variable without using class name, but
cannot refer to it with this. (Why?)

4

7/23/2001 (c) 2001, University of Washington 229

Draw the picture
BankAccount mine = new BankAccount(“Teacher”, 170.42);
BankAccount yours = new BankAccount(“Former Student”, 435769.17);

7/23/2001 (c) 2001, University of Washington 230

Symbolic Constants - final
• Sometimes we just want to give a name to a constant value

• Typically, these are a value that has only one occurrence, not a per-
class instance variable

• Solution: a static variable, but further qualified so it can’t be
changed after it is initialized

/** An important number */
public static final double PI = 3.1415926535;

• Final variables must be initialized when declared; cannot be
changed later

• Style issue: names are conventionally ALL_UPPER_CASE
• Style issue: named constants much preferred over magic numbers

scattered throughout the code

7/23/2001 (c) 2001, University of Washington 231

Constants in Java Libraries
• Several Java classes contain useful named constants
• Class Math contains PI and E, with the expected values

this.area = Math.PI * this.radius * this.radius;

• Classes like Integer and Double contain things like the
largest possible int value; the smallest positive non-zero
double, etc.

7/23/2001 (c) 2001, University of Washington 232

static Methods
• Some methods in Java aren’t naturally associated with

particular objects
• Most common example: basic math functions – sqrt, sin, cos, tan

• Methods can also be declared static, meaning one copy
associated with the class

7/23/2001 (c) 2001, University of Washington 233

Class Math
• Example: Math (class in standard Java library)

class Math {
public static double PI = 3.1415926535;
public static double E = 2.71828;
public static double sqrt(double x) { … }
public static double sin(double x) { … }
…

}

• Example of use
double distance = Math.sqrt(dx*dx + dy*dy);

