
1

6/27/2001 (c) 2001, University of Washington 71

CSE 142 Summer 2001

Defining Methods

6/27/2001 (c) 2001, University of Washington 72

Introduction
• A Quick Review:

• Objects, expressions, statements, types
• Creating classes

• New today:
• Defining methods – operational abstractions that “extend” Java
• Method parameters

6/27/2001 (c) 2001, University of Washington 73

A Simple Program
• Let's look at a simple class that uses methods to draw a simple scene

/** create a window and draw a simple scene */
class Scene {
GWindow theWindow; // window shared by all methods in this class
public void drawScene() {
theWindow = new GWindow();

drawHouse();
drawLeftTree();
drawRightTree();

}
}

• It's really easy to see what this program does.
• It tells us what the program is doing (not how).

6/27/2001 (c) 2001, University of Washington 74

drawHouse() [review]
/** Draw a picture of a house */
public void drawHouse() {
int frameX = 50; // lower left x of the walls
int frameY = 200; // lower left y of the walls
int wallWidth = 150;
int wallHeight = 100;
int roofWidth = 200;
int roofHeight = 50;
int overhang = roofWidth - wallWidth;
int roofBaseY = frameY - wallHeight;

// Make the basic frame of the house
theWindow.add(new Rectangle(frameX, roofBaseY, wallWidth, wallHeight));

// Now make the roof
theWindow.add(new Triangle(frameX-overhang, roofBaseY,

frameX + wallWidth + overhang, roofBaseY,
frameX + (wallWidth/2), roofBaseY - roofHeight));

}

6/27/2001 (c) 2001, University of Washington 75

drawLeftTree()
/** Draw the garden's left tree. */
public void drawLeftTree() {
int x = 270;
int y = 150;
int width = 20;
int height = 100;
int circleDiameter = 100;

theWindow.add(new Rectangle(x, y, width, height, Color.blue, true));
theWindow.add(new Oval(x - (circleDiameter-width)/2,

y - circleDiameter/2,
circleDiameter, circleDiameter,
Color.green, true));

}

6/27/2001 (c) 2001, University of Washington 76

drawRightTree()
/** Draw the garden's right tree. */
public void drawRightTree() {
int x = 340;
int y = 250;
int width = 20;
int height = 100;
int circleDiameter = 100;

theWindow.add(new Rectangle(x, y, width, height, Color.blue, true));
theWindow.add(new Oval(x - (circleDiameter-width)/2,

y - circleDiameter/2,
circleDiameter, circleDiameter,
Color.green, true));

}

2

6/27/2001 (c) 2001, University of Washington 77

Discussion
• What are the similarities and differences between these two

methods?
• We'd like to abstract out the notion of location.
• We can do that by parameterizing the method by the position

of the tree.

6/27/2001 (c) 2001, University of Washington 78

drawTree(int x, int y)
/**
Draw a tree at the given location.
@param x the upper left X coordinate of the trunk
@param y the upper left Y coordinate of the trunk

*/
public void drawTree(int x, int y) {
int width = 20;
int height = 100;
int circleDiameter = 100;

theWindow.add(new Rectangle(x, y, width, height, Color.blue, true));
theWindow.add(new Oval(x - (circleDiameter-width)/2,

y - circleDiameter/2,
circleDiameter, circleDiameter,
Color.green, true));

}

6/27/2001 (c) 2001, University of Washington 79

A new drawScene()
• Now we can use our new method:

/**
Draw the house and the two trees.

*/
public void drawScene() {
drawHouse();
drawTree(270, 150);
drawTree(340, 250);

}

• Other issues:
• What if we want to make trees different sizes?
• What's a little strange about the interface to drawTree?

6/27/2001 (c) 2001, University of Washington 80

How we really think about trees

totalHeight

crownWidth

trunkHeight

crownHeight

trunkWidth

base (x, y)

6/27/2001 (c) 2001, University of Washington 81

Let's rewrite drawTree
/**
Draw a tree with the given dimensions.
@param x the x coord of the center of the base of the trunk
@param y the y coord of the center of the base of the trunk
@param trunkWidth the width of the trunk etc etc. . . */

public void drawTree(int x, int y,
int trunkWidth, int trunkHeight,
int crownWidth, int crownHeight) {

int rectHeight = trunkHeight + (crownHeight/2);

theWindow.add(new Rectangle(x - trunkWidth/2,
y - rectHeight,
trunkWidth, rectHeight, . . .));

theWindow.add(new Oval(x - crownWidth/2,
y - trunkHeight - crownHeight,

crownWidth, crownHeight, . . .));

}

6/27/2001 (c) 2001, University of Washington 82

The Debugger
• We can watch this program execute inside of a debugger.
• Every debugger supports the following four fundamental

concepts:
• Setting a breakpoint
• From a breakpoint, we continue execution
• From a breakpoint, we can step our program: stepping into vs.

stepping over.
• From a breakpoint, we can inspect data

3

6/27/2001 (c) 2001, University of Washington 83

Tools In Pictures: The Debugger

A Machine

source file
(eg.

MyCode.java

Programmer

Debugger

6/27/2001 (c) 2001, University of Washington 84

Another Tool: JavaDoc
• Documentation is critical in software projects of any scale.
• Javadoc is a great tool that extracts documentation from

Java source files.
• Given a source file, it generates an HTML file(s) containing:

• Class descriptions
• Method signatures
• Method commentary

• To use it: simply write comments following the javadoc
convention.

6/27/2001 (c) 2001, University of Washington 85

Tools In Pictures: JavaDoc

Text Editor

JavaDoc
source file

(eg.
MyCode.java

Programmer

interface
description

(eg.
MyCode.html

6/27/2001 (c) 2001, University of Washington 86

Example Java File: The Input
/**
This class contains methods that draw a house onto a Gwindow.
@author Ben Dugan
@version 0.9

*/
public class Scene {

/**
Draw a tree at the given location.
@param x the upper left X coordinate of the trunk
@param y the upper left Y coordinate of the trunk

*/
public void drawTree(int x, int y) { . . . }

/** Draw the house at the given location. etc. etc. */
public void drawHouse(int x, int y) { . . . }

}

6/27/2001 (c) 2001, University of Washington 87

The Result
• We'd get something that looks like:

class SomeHouse

This class contains methods that draw a house onto a Gwindow.
Author: Ben Dugan
Version: 0.9

drawTree:
public static void drawTree(int x, int y)

Draw a tree at the given location.
parameters:

x the upper left X coordinate of the trunk
y the upper left Y coordinate of the trunk

drawHouse:
public static void drawHouse(int x, int y)

Draws the house at the given location. etc. etc

6/27/2001 (c) 2001, University of Washington 88

Javadoc Summary
• Javadoc doesn't eliminate the burden of writing good

comments.
• If comments are written in a particular style, javadoc can

automate the production good-looking, readable, accessible
documentation.

• All you need to know:
• Doc comments /** … */ as opposed to /* … */ or // …
� @author <your name>

� @param <parameter name> <description>

� @return <description>

