
1

7/1/2001 (c) 2001, University of Washington 89

CSE 142 Summer 2001

How Methods Work

7/1/2001 (c) 2001, University of Washington 90

Introduction
• Quick Review

• Method basics: operational abstractions

• Methods with parameters

• Today
• Mental models for understanding methods in action

• Introduction to scope

7/1/2001 (c) 2001, University of Washington 91

Thinking About Methods
• Two perspectives

• Client view: what the user of the method needs to know to use it
• Implementer view: what needs to be done to create the method

• The contract between these two views is the specification or
interface
• Method name, number and types of parameters (if any), result type

or void (no explicit result)
/** Draw a tree at the given location.

x the upper left X coordinate of the trunk
y the upper left Y coordinate of the trunk

*/
public void drawTree(int x, int y)

7/1/2001 (c) 2001, University of Washington 92

Client View: Substitution
• We can think of a method call as execution of the

specification where the values of the arguments are
substituted for the parameters.

• call:
int offset = 30;
scene.drawTree(2*offset, 140);

• means:
/** Draw a tree at the given location.

60 the upper left X coordinate of the trunk
140 the upper left Y coordinate of the trunk

*/
scene.drawTree(int 60, int 140);

7/1/2001 (c) 2001, University of Washington 93

Another call of the same method
• Call

int location = 95;
scene.drawTree(location, 300);

• Meaning
/** Draw a tree at the given location.

95 the upper left X coordinate of the trunk
300 the upper left Y coordinate of the trunk

*/
scene.drawTree(int 95, int 300);

• Idea: A method specification defines a higher-level
operation. Particular method calls carry out that operation,
with the correct arguments substituted for parameters

7/1/2001 (c) 2001, University of Washington 94

Implementer's View: Substitution
• From the implementer’s perspective, we can model a method call by

replacing the call with the method body, with appropriate substutions
• Specification:

/** Draw a tree at the given location.
x the upper left X coordinate of the trunk
y the upper left Y coordinate of the trunk */

public void drawTree(int x, int y) {
int width = 20;
int height = 100;
int circleDiameter = 100;
theWindow.add(new Rectangle(x, y, width, height, Color.blue, true));
theWindow.add(new Oval(x - (circleDiameter-width)/2, y - circleDiameter/2,

circleDiameter, circleDiameter, Color.green, true));
}

2

7/1/2001 (c) 2001, University of Washington 95

Implementer's View: Substitution
• Call

scene.drawTree(50, 140);

• Meaning
int width = 20;
int height = 100;
int circleDiameter = 100;
theWindow.add(new Rectangle(50, 140, width, height, Color.blue, true));
theWindow.add(new Oval(50 - (circleDiameter-width)/2, 140 - circleDiameter/2,

circleDiameter, circleDiameter, Color.green, true));

7/1/2001 (c) 2001, University of Washington 96

Control Flow
• A more operational view is to look at control flow – the order in which statements are

actually executed
int location = 95; // 1
scene.drawTree(location, 300); // 7

/** Draw a tree at the given location …*/
public void drawTree(int x, int y) {

int width = 20; // 2
int height = 100; // 3
int circleDiameter = 100; // 4
theWindow.add(new Rectangle(x, y, width, height, Color.blue, true)); // 5
theWindow.add(new Oval(x - (circleDiameter-width)/2, y - circleDiameter/2,

circleDiameter, circleDiameter, Color.green, true)); // 6
}

• The numbers in the comments show the order in which statements complete
execution

7/1/2001 (c) 2001, University of Washington 97

What Happens
• When we send a message (call a method):

1) The arguments (they are expressions) are evaluated (left to
right).

2) The method's parameter names are bound to the corresponding
values of the arguments.

3) Control passes to the first statement in the method body.

4) The body's statements are evaluated until there are no more, or
a return is encountered.

5) Control is passed back to the calling statement…

• Key point: Argument evaluation and parameter binding
happen before any statements in the method are executed

7/1/2001 (c) 2001, University of Washington 98

Draw the Picture!
int location = 95;
scene.drawTree(location, 300);

/** Draw a tree at the given location …*/
public void drawTree(int x, int y) {
int width = 20;
int height = 100;
int circleDiameter = 100;
theWindow.add(new Rectangle(x, y,

width, height, Color.blue, true));
theWindow.add(new Oval(

x-(circleDiameter-width)/2,
y - circleDiameter/2,
circleDiameter, circleDiameter,
Color.green, true));

}

7/1/2001 (c) 2001, University of Washington 99

Introduction to Scope
• The scope of a name is the region of the program in which

that name has a certain meaning (binding).
• Method definitions define a scope: names defined inside of

a method (either parameters or local names) are valid only
within the body of the method.

• The implication is important: it frees programmers from
worrying about name collisions.

7/1/2001 (c) 2001, University of Washington 100

Scope in Pictures
class Scene {
public void drawHouse() {
int x = 10; int y = 20; …
theWindow.add(new Rectangle(x, y, …));
…

}

public void drawTree(int x, int y, …) {
…
theWindow.add(new Rectangle(x, y, …));
…

}

}
• Each method defines its own scope: hence no confusion about “x” or “y”

3

7/1/2001 (c) 2001, University of Washington 101

Nesting Scopes
• Scopes may be nested. A class definition defines a scope, with method definition

scopes nested inside it.
class Scene {
GWindow theWindow;

public void drawHouse() {
int x = 10; int y = 20; …
theWindow = newGWindow();
theWindow.add(new Rectangle(x, y, …)); …

}

public void drawTree(int x, int y, …) {
…
theWindow.add(new Rectangle(x, y, …)); …

}

}

7/1/2001 (c) 2001, University of Washington 102

Which Name?
• Name resolution (figuring out which name to use) proceeds

as follows:
• Starting in the current scope, was the name defined in this scope?
• If not, go to the enclosing scope and look for the name there.

• This explains how we can use the name theWindow in the
previous example even though it was not defined in the
scope of drawHouse() or drawTree()

• This applies to both method and object names

