
1

7/17/2001 (c) 2001, University of Washington 172

CSE 142 Summer 2001

Classes, Collections &
Introduction to Iteration

7/17/2001 (c) 2001, University of Washington 173

Introduction
• Review

• Song class

• Compact Disc collection

• A collection implementation: ArrayList
• Casting

• Today
• Implementing a collection class: CompactDisc

• toString()
• Iteration: processing the items in a collection

7/17/2001 (c) 2001, University of Washington 174

Problem Setting
• We want to create a class to describe a compact disc
• Class Song

• Description of a single song
• Representation: Song title, length (time in seconds)
• Operations: construct Song; get Song title or length

• Class CompactDisc
• Description of the tracks (songs) on a single disc
• Representation:

Compact disc title, total length
List of individual Songs on the disc

• Operations: construct empty CompactDisc; add Song to
CompactDisc, get Song given position, get total length, etc.

7/17/2001 (c) 2001, University of Washington 175

Class Song (review)
/** Representation of a single song on a CD */
public class Song {
private int seconds; // song length
private String title; // song title
/** Construct new song … */
public Song (String title, int seconds) { … }
/** get Song title */
public String getTitle(){ return this.title; }
/** get Song time */
public int getSeconds() { return this.seconds; }

}

7/17/2001 (c) 2001, University of Washington 176

Client view of class CompactDisc
// Create a new CompactDisc and perform operations on it…
CompactDisc cd = new CompactDisc();
Song tune = new Song(“Lovely Melody”, 245);
cd.add(tune);
cd.add(new Song(“Elevator Music”, 640));
Song muzak = cd.get(1);
System.out.println(“Total length of ” + cd.getTitle() + “ is ” +

cd.getSeconds() + “ seconds.”;

7/17/2001 (c) 2001, University of Washington 177

Implementation of class CompactDisc (1)
• Representation:

• Title and total seconds are simple (String and int)

• List of Songs: Use a standard Java collection class: ArrayList
public class CompactDisc {

// instance variables
private ArrayList songs; // list of Songs on this CD
private String title; // CD title
private int totalSeconds; // total length of CD

2

7/17/2001 (c) 2001, University of Washington 178

Implementation of class CompactDisc (2)
• Key operation: add a Song to this CompactDisc

/** Add song to end of this CompactDisc song list
public void add(Song song) {

this.songs.add(song);
this.totalSeconds = this.totalSeconds + song.getSeconds();

}

• Draw the picture
CompactDisc cd = new CompactDisc();
Song aTune = new Song(“Lovely Melody”, 245);
Song anotherTune = new Song(“Elevator Music”, 640);
cd.add(aTune);
cd.add(anotherTune);

7/17/2001 (c) 2001, University of Washington 179

CompactDisc Picture

7/17/2001 (c) 2001, University of Washington 180

Implementation of class CompactDisc (3)
• Get a Song from the list

/** Return song at given position in the CompactDisc list … */
public Song get(int pos) {

return (Song)this.songs.get(pos);
}

• Dissect the expression in the return statement: what objects are
referred to? What are the types?

7/17/2001 (c) 2001, University of Washington 181

Aside: Objects as Strings
• We’ve already noticed that if we print something like a Color,

we get a useful description
Color r = Color.red;
Color c = Color.cyan;
System.out.println(r);
System.out.println(c);

Output:
java.awt.Color[r=255,g=0,b=0]
java.awt.Color[r=0,g=255,b=255]

• How does this happen?

• How can we get our classes to do something similar?

7/17/2001 (c) 2001, University of Washington 182

toString()
• If a class contains a method toString(), it will be used to

generate a String representation of the object when it is used
somewhere that a String is expected (like println)

class Song {
…
public String toString() {

String description = “Song: title = ” + this.title + “, length = ” + this.seconds;
return description;

}
}

• Exact format is up to implementer – do something useful
• Useful for debugging – can print an object to get info about it

7/17/2001 (c) 2001, University of Washington 183

Getting information from a Collection
• Let’s add a method printTitles() to CompactDisc to print the

Song titles in the CompactDisc. How?
/** Print the titles of the songs in this CD */
public void printTitles() {

Song s0 = this.get(0);
System.out.println(s0.getTitle());
Song s1 = this.get(1);
System.out.println(s1.getTitle());
Song s2 = this.get(2);
System.out.println(s2.getTitle());
…

}

• This doesn’t generalize very well. Why not?

3

7/17/2001 (c) 2001, University of Washington 184

Repetition
• What we really want to do is repeat some statements once

for each Song in the list
start at the beginning of the list
repeat the following:

if there is another Song in the list,
print its title and advance to the next Song on the list

keep going until the last Song’s title has been printed

• So we need two things:
• Some way to repeat statements

• Some way to access the elements of the Song list one after the
other

7/17/2001 (c) 2001, University of Washington 185

The while loop pattern
• New Java statement to repeatedly execute other statements:

while (<conditional-expression>) {
<body-statements>

}

• Meaning: repeatedly do the following
• Evaluate <conditional-expression> (a boolean expression)

• If <conditional-expression> is true, execute <body-statements>

This cycle repeats until <conditional-expression> evaluates
to false at some point

7/17/2001 (c) 2001, University of Washington 186

Iterators: Iterating over a Collection
• We could figure out how many items are in the collection,

then process them in order (get(0), get(1), etc.)
• Better: make the notion of iteration explicit.
• Any collection can be asked to provide an object that allows

us to sequentially access the items in the collection.
• The general term for this object is iterator
• In Java, there are several different kinds; we’ll look at the

one that works with ArrayList: Iterator

7/17/2001 (c) 2001, University of Washington 187

Iterator Operations
• Here are the methods provided by an Iterator:

/** return the next Object in the iteration. */
public Object next();

/** return true if the iteration has more elements. */
public boolean hasNext();

• This doesn't seem useful enough to do anything.

• How do we use this to access every item in an Iteration?

7/17/2001 (c) 2001, University of Washington 188

Using an Iterator
• Pattern: ask the collection for an iteratior and iterate over it
• Example: Go through the Songs in a CompactDisc and print

their titles
• We get an iterator object from the songs collection (an ArrayList)

/** Print the titles of the songs in this CompactDisc */
public void printTitles() {

Iterator it = this.songs.iterator();
while (it.hasNext()) {

Song currentSong = (Song)it.next();
System.out.println(currentSong.getTitle());

}

7/17/2001 (c) 2001, University of Washington 189

Trace
• Trace that code assuming that songs contains

{“Lovely Tune”, 45}, {“Big Hit”, 300}, {“The End”, 182}

• Draw the picture

4

7/17/2001 (c) 2001, University of Washington 190

Exercise 1: Finding the Longest Song
• Suppose we want to print the title of the longest Song?
• How would we do it?

7/17/2001 (c) 2001, University of Washington 191

Exercise 2: Print Titles of all Songs > 1 min.
• Your code goes here:

