Introduction

CSE 142 Summer 2001

Iteration Patterns

* Review
+ Collection Classes
+ Iteration and iterators
* Today
« Iteration patterns and problem solving
«» Comparing objects, particularly Strings

7/18/2001 (¢) 2001, University of Washington

192

7/18/2001 (¢) 2001, University of Washington 193

Running Example for Today

Weather Data Representation

+ Collection of weather information for several days
« Each item in the collection contains
* A description: “clear”, “partly cloudy”, “snow”, etc.
* High and low temperatures for the day
» Amount of rainfall that day
* Problems: Examine weather data and
+ Display some or all data
« Calculate statistics or other information
+ Extract selected data
* Goal: Observe and learn patterns

* Weather data for a single day
Class DailyWeather {
public String description; Il“sunny”, “partly cloudy”, “rain”, etc.

public double high; II'high temperature for day
public double low; I'low temperature for day
public double rain; Il rainfall for the day; 0.0 if none

[** Construct new DailyWeather object with given initial values */
public DailyWeather (String description, double high, double low,
double rainfall) { ... }
[** Return string representation of this DailyWeather object */
public String ToString(){ ... }
« For this example, we're treating DailyWeather as an auxiliary class, meant only to be
used to implement collection of weather info, so we'll manipulate fields directly
« (Not good strategy if this class is used more widely)

7/18/2001 (¢) 2001, University of Washington

7/18/2001 (¢) 2001, University of Washington 195

Collection of Weather Data

Example Collection

Class Weathernfo {
private ArrayList weather; // collection of DailyWeather records

[** Construct empty WeatherInfo object */
public WeatherInfo() {
this.weather = new ArrayList();

}

[** Add DailyWeather object to this collection */

public void add(DailyWeather d) {
this.weather.add(d);

}

}

WeatherInfo w = new WeatherInfo();

w.add(new DailyWeather(“Sunny", 80, 67, 0.0));
w.add(new DailyWeather(“Sunny", 75, 63, 0.0));
w.add(new DailyWeather(“Cloudy”, 76, 65, 0.05));
w.add(new DailyWeather(“Flood”, 71, 54, 4.6));

* Draw the picture

7/18/2001 (¢) 2001, University of Washington

196

7/18/2001 (¢) 2001, University of Washington 197

Processing the Collection

Basic pattern

+ Sample problems
* Print the weather data on System.out
* Print # days with high temperature < 75.0
+ Print total rainfall summed over all data in the collection
« Print % of days with no rainfall
* Print number of days described as “sunny”
« Extract a new WeatherInfo collection containing all records in this
collection not labeled “sunny”
* What do these have in common?

* How do they differ?

I** Process collection */
public <type> <name> (<parameters>) {
<initialize>
Iterator it = this.weather.iterator();
while (ithasNext()) {
DailyWeather w = (DailyWeather) it.next();
< process w>
}
<final processing>
+ Focus on loop design
+ What are <initialize>, <process w>, <final processing> ?
* Invent names (variables) as needed
« Usually best to focus on <process w> at first

7/18/2001 (¢) 2001, University of Washington 198

7/18/2001 (¢) 2001, University of Washington 199

Print All Daily Weather Records

Calculate Total Rainfall

P

public void printRecords () {

P

public double totalRain () {

Il'initialize:

Iterator it = this.weather.iterator();

while (it.hasNext()) {

DailyWeather w = (DailyWeather) it.next();

Il process w

}
Il'terminate

}
7/18/2001 (c) 2001, University of Washington 200

Il'initialize:

Iterator it = this.weather.iterator();

while (it.hasNext()) {

DailyWeather w = (DailyWeather) it.next();

Il process w

}
Il'terminate

}
7/18/2001 (c) 2001, University of Washington 201

Calculate # of Days with No Rainfall

Calculate % of Days with Temp <t

It
public int numberDry () {

Ilinitialize
Iterator it = this.weather.iterator();
while (it.hasNext()) {
DailyWeather w = (DailyWeather) it.next();
Il process w

I terminate

It
public double percentCold (double t) {

Ilinitialize
Iterator it = this.weather.iterator();
while (it.hasNext()) {
DailyWeather w = (DailyWeather) it.next();
Il process w

I'terminate

7/18/2001 (¢) 2001, University of Washington 202

7/18/2001 (¢) 2001, University of Washington 203

Calculate # of “sunny” Days

Comparing Strings (1)

It
public int numberSunny() {
Initialize
Iterator it = this.weather.iterator();
while (it.hasNext()) {
DailyWeather w = (DailyWeather) it.next();
Il process w
}
I'terminate
}
7/18/2001 (c) 2001, University of Washington 204

+ == and != probably don’t do what you want for Strings (or other
objects)
« Tests object identity (are two things the same String)
« Don't test object equality (do the two strings have the same value)
+ Can compare any two objects with method equals
+ objl.equals(obj2) is true if the objects are “equal”
+ Meaning of “equal” depends on definition of equals for the class of the objects
« For Strings, obj1.equals(obj2) if they contain the same String value
+ We'll see later how to define this for our own classes

7/18/2001 (¢) 2001, University of Washington 205

Comparing Strings (2)

* Besides equals, class String implements compareTo
* Returns an int
* If s1 and s2 are strings,
+ sl.compareTo(s2) == 0 if s1 and s2 are the same
* sl.compareTo(s2) < 0if s1<s2
* sl.compareTo(s2) >0 if s1 >s2
+ Ordering depends on order in the underlying Unicode character set

+ Fast, but not always correct alphabetical order for natural languages (other Java
libraries are available for those comparisons)

Calculate # of “sunny” Days - Revisited

7/18/2001 (¢) 2001, University of Washington 206

P
public int numberSunny() {

Il'initialize:

Iterator it = this.weather.iterator();

while (it.hasNext()) {

DailyWeather w = (DailyWeather) it.next();

Il process w

}
Il'terminate

}
7/18/2001 (c) 2001, University of Washington 207

Calculate # of “cloudy” or “rainy” Days

It
public int cloudsAndRain() {

Ilinitialize
Iterator it = this.weather.iterator();
while (it.hasNext()) {
DailyWeather w = (DailyWeather) it.next();
Il process w
}
I terminate

Get a New List with all “sunny” days

7/18/2001 (¢) 2001, University of Washington 208

It
public ArrayList sunnyDays() {

Ilinitialize

Iterator it = this.weather.iterator();

while (it.hasNext()) {

DailyWeather w = (DailyWeather) it.next();

Il process w

}
I'terminate

}
7/18/2001 (c) 2001, University of Washington 209

Iteration Summary

+ As you program, start to pick up common patterns
* Today: iterating through a collection
* The larger your toolbox, the more proficient you will become
» We saw three different kinds of iterations
« Traversal — Do something with each item (print, modify)
+ Reduction — Compute some summary information extracted from
the items (averages, totals, counts)
« Filtering — Create a new collection that is a subset of the original
collection, based on some filtering criteria

7/18/2001 (¢) 2001, University of Washington 210

