
1

6/25/2001 (c) 2001, University of Washington 55

CSE 142 Summer 2001

Creating a Class

6/25/2001 (c) 2001, University of Washington 56

Introduction
• Quick Review:

• Creating, naming and using objects
• Expressions and Types
• Messages and parameters
• Syntactic and Semantic errors

• Today:
• Put it all together to build our first class!

6/25/2001 (c) 2001, University of Washington 57

Classes and Objects
• The Java World

• Objects interact with each other by sending and reacting to
messages

• Objects are instances of classes
• A class defines a new type and is a blueprint for individual instances

(objects) of that class

• The fundamental programming task in Java is creating or
modifying classes

6/25/2001 (c) 2001, University of Washington 58

Program Development
• Let's look at some statements we might use to draw a

picture of a house:

Gwindow theWindow = new Gwindow();

// Make the frame of the house
theWindow.add(new Rectangle(50, 200, 150, 100));
theWindow.add(new Triangle(30, 180, 230, 180, 125, 150, Color.red, true));

// Make a window by drawing four frames.
theWindow.add(new Rectangle(60, 220, 15, 30));
theWindow.add(new Rectangle(75, 220, 15, 30));
theWindow.add(new Rectangle(60, 250, 15, 30));
theWindow.add(new Rectangle(75, 250, 15, 30));

6/25/2001 (c) 2001, University of Washington 59

A House class
• We would like to package these statements so we can

create “house” objects that carry out those actions

House home = new House();

home.drawHouse();

6/25/2001 (c) 2001, University of Washington 60

Tools: Editor & Compiler
• We'd like to be able to keep these statements somewhere,

so we don't have to retype them all the time.
• We can use a tool (program) called a text editor to enter and

modify our statements.
• The editor can save our statements into a file (source file).
• We can then use another tool called a compiler to translate

our source code into another language: machine code.
• The compiler produces another file of machine code, which

we can give to a machine to execute.

2

6/25/2001 (c) 2001, University of Washington 61

Tools in Pictures: Compilation

Text Editor

Compiler

A Machine

source file
(eg.

TheClass.java

machine code
(eg.

TheClass.class

Programmer

6/25/2001 (c) 2001, University of Washington 62

Developing Software with a Compiler
• It usually involves (at least) the following steps:

• 1: Edit your source code
• 2: Compile your source code
• 3: Possibly repeat steps 1 and 2. (Why?)
• 4: Run the program
• 5: Possibly go back to step 1 (Why?)

• Notice the differences compared to the interpreter:
• "Batch mode" (compiler) vs. "interactive mode" (interpreter)

6/25/2001 (c) 2001, University of Washington 63

A Java Source File
/** A House picture */
public class House {

/** Create a new window and draw a picture of a house in it */
public void drawHouse() {
// Make a new Graphics window
GWindow theWindow = new GWindow();

// Make the basic frame of the house
theWindow.add(new Rectangle(50, 200, 150, 100));
theWindow.add(new Triangle(30, 180, 230, 180, 125, 150, . . .));

// Draw a single window, by drawing 4 panes
theWindow.add(new Rectangle(60, 220, 15, 30));
theWindow.add(new Rectangle(75, 220, 15, 30));
theWindow.add(new Rectangle(60, 250, 15, 30));
theWindow.add(new Rectangle(75, 250, 15, 30));

}
}

• What looks familiar about this? What looks different?
6/25/2001 (c) 2001, University of Washington 64

A Pattern
• For now, use the following pattern:

/** Description of the class */
public class < Some name for your class > {

/** description of the method */
public void <some name for your method>() {

// put the method’s code here

}
}

• If you choose a class name like TheClass, put this in a file
and call the file TheClass.java

6/25/2001 (c) 2001, University of Washington 65

A Bug
• Run the program.
• Is there something wrong with it?
• This is a kind of error that we haven't seen yet.
• It's as if we've given directions that are perfectly

understandable (correct syntax and semantics), it's just that
they don't get us to where we want to go…

6/25/2001 (c) 2001, University of Washington 66

Style Issues
• Ok, so we've fixed the bug. What else is wrong with the

program?
• Imagine someone telling you that they love your house, they

just wish:
• it were a little over to the left
• it were a little taller
• it were a little wider

• How hard is it going to be to make these modifications?

3

6/25/2001 (c) 2001, University of Washington 67

A Better Program
How would you define the house? What coordinates and dimensions matter?

6/25/2001 (c) 2001, University of Washington 68

Picking Dimensions
• Clearly, there are a variety of combinations of dimensions

that we can pick:
• Overall width, wall width, overall height, wall height, (x,y)
• Wall width, roof width, wall height, roof height, (x,y)
• Can you think of others?

• There may be no "best" combination, but the second (above)
seems pretty natural, so let's go with it.

6/25/2001 (c) 2001, University of Washington 69

Rewriting the code:
int frameX = 50; // lower left x of the walls
int frameY = 200; // lower left y of the walls
int wallWidth = 150;
int wallHeight = 100;
int roofWidth = 200;
int roofHeight = 50;
int overhang = roofWidth - wallWidth;
int roofBaseY = frameY - wallHeight;

// Make the basic frame of the house
theWindow.add(new Rectangle(frameX, roofBaseY, frameWidth, frameHeight));

// Now make the roof
theWindow.add(new Triangle(frameX-overhang, roofBaseY,

frameX + wallWidth + overhang, roofBaseY,
frameX + (wallWidth/2), roofBaseY - roofHeight));

6/25/2001 (c) 2001, University of Washington 70

A Better Program
• Notice that both versions of the program have the same

basic functionality -- they both draw a house.
• The second version is better, however: higher quality, more

beautiful, and so on.
• Why? Because it is easier to modify, easier to understand,

and so on.

