
1

6/21/2001 (c) 2001, University of Washington 39

CSE 142 Summer 2001

Objects, Expressions, Types, Messages

6/21/2001 (c) 2001, University of Washington 40

Introduction
• Quick Review:

• Creating and using objects

• Naming objects

• Sending messages

• In this lesson:
• Reinforce the above concepts

• Get a little bit more formal

6/21/2001 (c) 2001, University of Washington 41

Expressions
• Look at this statement

Rectangle rect = new Rectangle(10,20,30,40);

• Remember our pattern for naming:

<The kind of thing> <the name> = <the thing we're naming>;

• What is the stuff on the right of the '="? We call it an
expression.

• We evaluate an expression to compute a value.
• The name is bound to the value of the expression.

6/21/2001 (c) 2001, University of Washington 42

Expressions 2
• What are legal expression?

• a literal representation of an value
• the creation of a new object
• a name of another object
• the result of sending a message to an object
• combinations of the above (we'll see how to combine them later)

• Examples
1
"hello"
aSquare
aSquare.width()
new Rectangle(10, 20, 30, 40)

6/21/2001 (c) 2001, University of Washington 43

Arithmetic Operators
• Java provides arithmetic operators so we can build

mathematical expressions:

1y % 5remainder%

2y / 5divide/

55y * 5multiply*

6y - 5subtract-

16y + 5add+

Value (y=11)ExampleMeaningSymbol

6/21/2001 (c) 2001, University of Washington 44

Arithmetic Operators (2)
• We call the above binary operators, because the operate

upon two subexpressions.
• The "-" symbol can be used to negate values as well:

int x = 5 * - y;

• Precedence works like normal math rules. If you're unsure,
or wish to override, use parenthesis:

int x = 2;
int y = 4;
int m = x + y * 8; // What's m ? (this is a "comment")
int n = (x + y) * 8; // What's n ?

2

6/21/2001 (c) 2001, University of Washington 45

Operator Patterns
• All binary operators are used in the following pattern:

<expression> <operator> <expression>

• Where <operator> is one of +, -, *, /, or %

6/21/2001 (c) 2001, University of Washington 46

Division
• Division seems a little strange in Java.
• What is 5 divided by 2?

int x = 5;
int y = x / 2; // What's y?

• Division between integers is integer division (no fractions)!
• If you want the remainder, use the % operator.
• If you want to represent a fractional amount, use a different

kind of number (like a double)

6/21/2001 (c) 2001, University of Washington 47

Sequence of Statements
• Most programs need to do a sequence of things. In Java,

we do this by writing a sequence of statements:

int width = 20;
Rectangle square = new Rectangle(width, width, 100, 200);
square.move(35, 10);

• The above example has three statements. A semicolon
terminates a statement.

• Semicolons are like the "." (full stop) in written English.
• The machine evaluates one statement at a time (for effect,

not value). Different than expressions!

6/21/2001 (c) 2001, University of Washington 48

Types
• Some more expressions:

"hello"
aSquare
aSquare.width()
aSquare.length() * 24

• What kind of thing does each expression evaluate to?
• Java calls "kinds of things" types.

• When we create a new name, we must always provide a type:

String greeting = "hello";

• We can now write our naming pattern more formally:

<Type> <name> = <expression>;

6/21/2001 (c) 2001, University of Washington 49

Type Mismatches
• What's wrong with this sentence: "Her age is green."
• Java is extremely picky about these kinds of errors, which

we call type mismatches. For example:

int myAge = "green";
String greeting = 23;

• Why do you think that Java is picky about this kind of thing?

6/21/2001 (c) 2001, University of Washington 50

Kinds of Errors
• A couple more Bushisms:

• Is our children learning?

• We ought to make the pie higher.

• Both fail to convey meaning, but why?
• The first has a syntax error (a grammar mistake)

• The second has a semantic error (a misuse of types): we think of
pies getting bigger and smaller, not higher

• Both of these kinds of errors are illegal in Java.

3

6/21/2001 (c) 2001, University of Washington 51

Syntax & Semantic Errors
• What is wrong with each of these statements? Syntax or semantics?

int x 7;

String myName = 7;

aSquare.move("hello", 40);

int velocity = distance / ;

String greeting = "hello" 56;

int area = length * "width";

6/21/2001 (c) 2001, University of Washington 52

Method Parameters
• Many messages require some information:

aRectangle.move(10, 20);

• We call the items we send with a message parameters (or
sometimes arguments)

• Each parameter may be any expression, as long as the type
and number of parameters matches what the method
expects:

aRectangle.move("hello", 20);
aRectangle.move(30);

6/21/2001 (c) 2001, University of Washington 53

Method Interface
• How do we know the right way to send a message?
• To really know (and how Java knows): look at the interface.
• An interface defines: method name, number, type of

parameters, and type of the resulting value. It often also has
commentary about the behavior of the method.

6/21/2001 (c) 2001, University of Washington 54

Method Interface: Examples
• Here's an example for the move method for Shapes:

// Change the position of the shape by the given deltas.
// Parameters:
// deltaX: the distance in the X direction to move
// deltaY: the distance in the Y direction to move
void move(int deltaX, int deltaY);

• What does void mean?
• Here's an example for the length method for Strings:

// Answer the length of the string
int length();

