
1

8/10/2001 (c) 2001, University of Washington 313

CSE 142 Summer 2001

Event Driven Programming & Graphical User
Interfaces – a Survey

8/10/2001 (c) 2001, University of Washington 314

Introduction
• Review:

• Creating Objects
• Conventional programs with data

• Today:
• Event-driven programming
• User interface objects
• Applications & Applets

• Disclaimer: Just skimming the details, and giving basic
examples using Java’s Abstract Window Toolkit. Much more
to learn – many more methods, SWING, etc.

8/10/2001 (c) 2001, University of Washington 315

Conventional Programs
• Form and order of input is given in program specification
• Program typically reads input, processes somehow,

produces some output
• Weather data examples
• Simulation

8/10/2001 (c) 2001, University of Washington 316

Event Driven Programs
• Program starts up then waits for “events” and reacts to them
• Events

• Mouse click
• Keyboard press
• Menu selection
• Timer or clock tick
• Request over a network connection
• etc. etc. etc.

• Typically, events may arrive in arbitrary order

8/10/2001 (c) 2001, University of Washington 317

Java Event Handling Architecture
• Objects indicate they are interested in particular classes of

events by implementing an appropriate interface and
registering themselves with the objects that generate the
events

• When an event happens, an appropriate method is called in
all registered objects listening for that event

8/10/2001 (c) 2001, University of Washington 318

Example Event Interface - MouseListener
• Specification

interface MouseListener {
public void MouseClicked(MouseEvent e);
public void MouseEntered(MouseEvent e);
public void MouseExited(MouseEvent e);
public void MousePressed(MouseEvent e);
public void MouseReleased(MouseEvent e);

}

• An object that wants to know about mouse events that
happen to it can implement this interface & register itself by
calling addMouseListener(this) on an appropriate object
• Must implement all methods, but bodies can be empty for methods

that the object wants to ignore

2

8/10/2001 (c) 2001, University of Washington 319

Java Graphical User Interface Components
• Many kinds: buttons, labels, text boxes, drawing areas, …
• A few are “top-level” objects, including

• Frame (a regular window)
• Applet (a window that is hosted in another window)

• Some are individual objects that have no substructure
• Label, Button, …

• Top-level and some other kinds of objects (Panel) can
“contain” other objects
• A Frame may contain text fields, labels, pictures, buttons, etc…

8/10/2001 (c) 2001, University of Washington 320

Drawing – Method Paint
• All of the GUI components are responsible for displaying

themselves when asked
• Mechanism – implement method paint(…)

public void paint(Graphics g) {
g.setColor(Color.green);
g.fillRect(0,0,width,height);
g.setColor(Color.black);
g.drawRect(0,0,width-1,height-1);

• The graphics context g is a reference to the window object where
the drawing actually occurs

• Graphics supports many procedural drawing methods

8/10/2001 (c) 2001, University of Washington 321

Object Class Relationships
• Most of the objects in the Java user interface share common

behavior
• Can draw themselves, can move to the front or back of the window
• Have a size, color, etc., and can change these things

• Would be terribly inconvenient to have to implement this by
writing the same methods over and over in each class

• Want to be able to specify generic behavior for GUI
components once and reuse

8/10/2001 (c) 2001, University of Washington 322

Inheritance
• A key idea in object-oriented programming
• Concept: A new class can be defined as a variation on

another one
public class Othello extends Panel { … }

• Notion: an Othello object is a Panel object and, unless specified
otherwise, it works exactly like a generic Panel – we say it inherits
all of Panel’s methods and instance variables

• Can customize Othello objects by defining new versions of generic
Panel methods in class Othello – the new methods in Othello are
said to override the inherited methods

• Can also define new instance variables in Othello

8/10/2001 (c) 2001, University of Washington 323

Inheritance vs Interfaces
• Key difference: inheritance provides code sharing – we

inherit implementations from the base class
• Can only extend one class, but can also implement one or

more interfaces
public class Othello extends Panel implements MouseListener { … }

• If we don’t define a method that exists in the base class, we
use the inherited one

• If we implement an interface, we must give implementations
of all methods defined in that interface

8/10/2001 (c) 2001, University of Washington 324

Class Object
• Now we know the story behind Object

• Every class implicitly extends Object
• Implication: every object, regardless of its specific class, is also an

instance of class Object
• That’s why container classes like ArrayList can hold Strings,

Rectangles, etc., and why we need to use a cast to specify that the
Object retrieved from a container has a more specific class

3

8/10/2001 (c) 2001, University of Washington 325

Starting a Program
• Native Java supports two ways to run a program

• Applications – stand alone programs
• Applets – programs that run in another environment, typically a web

browser

• BlueJ allows us to create objects without knowing about
such things, by hiding the details behind the scenes

8/10/2001 (c) 2001, University of Washington 326

Applications
• Every class can contain a static method main

public static void main(String[] args) { … }

• Must be declared exactly like that

• Any class with a main can be run as a main program
• Command line interface for compiling and running a program

javac Board.java
java Board

• Some classes are designed as the starting point for a
program
• Create some objects, start things off by calling methods

• Other classes often contain a main method that serves as a
test or demo program for the class

8/10/2001 (c) 2001, University of Washington 327

Applets
• An applet is any class that extends Applet

class Applet {
// called when applet first loaded – initialize things as in a constructor
public void init() { … }
// called when applet becomes visible
public void start() { … }
// called when applet is no longer displayed
public void stop() { … }
// called when applet is deleted from the host window
public void destroy() { … }
…

}

8/10/2001 (c) 2001, University of Washington 328

Applets
• A web browser knows to load and start an applet when it

renders html code that contains an applet tag (or something
similar)

<APPLET CODE="OthelloApplet.class" WIDTH=400 HEIGHT=400
CODEBASE=.> </APPLET>

• If the applet is loaded over the web, CODEBASE would contain a
URL showing where to find it

8/10/2001 (c) 2001, University of Washington 329

Applets vs Applications
• Applications

• Can do anything that a program running on the machine with the
current user’s permissions can do

• Applets
• Normally run in a security “sandbox”.
• Restrictions: Can’t read/write local files, can’t open arbitrary web

connections, can’t do other nasty things….

