
1

7/1/2001 (c) 2001, University of Washington 108

CSE 142 Summer 2001

Making Decisions

7/1/2001 (c) 2001, University of Washington 109

Introduction
• Today:

• Making decisions

• Decision trees

• Relational operators, boolean operators

7/1/2001 (c) 2001, University of Washington 110

Decisions – Conditional Execution
• So far, we only have the ability to execute statements

(including method calls) one after the other
• Almost any real program needs to be able to make decisions

during execution
• Check whether there’s enough money in the account for a

withdrawal request
• If it’s dark outside, turn on the lights
• If the temperature is less than 68, turn on the furnace

• Java, like any interesting programming language allows
statements to be executed conditionally, depending on the
value of some boolean (logical, true/false) expression

7/1/2001 (c) 2001, University of Washington 111

Buying Beer
• Convenience store owners use this algorithm:

Check the buyer's ID. If it says they are at least 21, sell
them beer, otherwise send them home.

• How can we say this in Java?

7/1/2001 (c) 2001, University of Washington 112

A Decision Tree
• It helps to visualize our algorithm:

21 or over?

sell them
beer

send them
home

yesno

7/1/2001 (c) 2001, University of Washington 113

Expressing a Decision in Java
• We can write this in Java:

int age = input.readInt(“Enter customer’s age: ”)
if (age >= 21) {
System.out.println(“Sell beer”);

} else {
System.out.println(“Send person home”);

}

2

7/1/2001 (c) 2001, University of Washington 114

The if-statement Pattern
• We use this pattern for our decisions:

if (<condition-expression>) {
<then-statements>

} else {
<else-statements>

}

• <condition-expression> is a boolean expression
• (Reminder: boolean is a type in Java; boolean expressions are

anything that evaluates to true or false)

7/1/2001 (c) 2001, University of Washington 115

Comparing Numbers
• Java provides operators for comparing numbers:

=

≠

≤

≥

<

>

Math
Symbol

y != 5not equal!=

y >= 11greater than or equal>=

y <= 10less than or equal<=

y == 5equal==

y < 5less than<

y > 5greater than>

Value if y is 11ExampleMeaningJava
Operator

7/1/2001 (c) 2001, University of Washington 116

Refinement
• This is closer to the real algorithm used:

If the customer looks over 31, sell them beer. Otherwise,
check their ID. If it says they are over 21, sell
them beer, otherwise send them home.

• Draw the decision tree:

7/1/2001 (c) 2001, University of Washington 117

The Refinement in Java
• Here's the algorithm again:

If the customer looks over 31, sell them beer. Otherwise,
check their ID. If it says they are over 21, sell
them beer, otherwise send them home.

• Implement it in Java:

7/1/2001 (c) 2001, University of Washington 118

Combining Boolean Expressions
• What if we want to check if a number is between 20 and 45?

if (x > 20) {
if (x < 45) {
// do something. . .

} else { . . . }
} else { . . . }

• Java allows us state this more directly:

if (x > 20 && x < 45) {
// do something.

}

7/1/2001 (c) 2001, University of Washington 119

Boolean Operators
• Operators for combining boolean expressions:

!(y > 5)not (true when
subexpression is false)

!

(y < 5) || (y == 11)or (true when either or both
subexpressions are true)

||

(y > 5) && (y < 11)and (true when both
subexpressions are true)

&&

Value if y
is 11

ExampleMeaningSymbo
l

3

7/1/2001 (c) 2001, University of Washington 120

Checking for Range
• We often want to express something like: 10 < x < 20
• Let's try it:

if (10 < x < 20) { . . .}

• This doesn't work, why?

• We need to use boolean operators:

if (10 < x && x < 20) { . . . }

7/1/2001 (c) 2001, University of Washington 121

The if-statement Pattern - Variation
• At times, we only need to decide whether or not to do

something; there’s nothing else to do if we decide no
• The “else” part of the if statement can be omitted in this case

if (<condition-expression>) {
<then-statements>

}

• Meaning: if <condition-expression> is true, execute <then-
statements>, otherwise do nothing
if (temperature > 80) {

System.out.println(“Too hot for Seattle natives!”);
}

