Introduction

CSE 142 Summer 2001

Constructors & Information Hiding

* Review
* Objects with data
* Instance variables
+ Updating object data
« Methods with result values
* Today
« Constructors: initialization
« public/private: information hiding

7/10/2001 (¢) 2001, University of Washington 137

7/10/2001 (¢) 2001, University of Washington 138

A BankAccount Class (Review)

Initial Values for Instance Variables (1)

class BankAccount {

double balance = 0.0; Il'account balance in dollars
int accountNumber = 0; Il'account number
String accountName = “"; /' account owner's name

I** Store a new name in this BankAccount object

* @param accountName the new name of this account */

public void setAccountName(String accountName) {
this.accountName = accountName;

}

}
+ What is wrong with this picture?

+ Wanted: some mechanism for giving instance variables
sensible values in each a new object (instance)

+ We can specify initial values when we declare (create) the instance
variables

class BankAccount {

double balance =0.0; Il'account balance in dollars
int accountNumber = 0; Il'account number
String accountName =*; Il'account owner's name

+ Good idea? Why or why not?

7/10/2001 (¢) 2001, University of Washington 139

7/10/2001 (¢) 2001, University of Washington 140

Initial Values for Instance Variables (2)

Initial Values for Instance Variables (3)

» We could declare the instance variables without initial
values, and provide methods to set the fields

class BankAccount {

double balance; Il'account balance in dollars
int accountNumber; I'account number
String accountName; I account owner's name

I** Store a new name in this BankAccount object

* @param accountName the new name of this account */

public void setAcco ing acco) {
this.accountName = accountName;

}

}
* Good idea? Why or why not?

» We could supply a method the programmer could call to
initialize all of the instance variables

class BankAccount {

double balance; Il'account balance in dollars
int accountNumber; Il'account number
String accountName; I account owner's name

[Set the name, number, and balance for this account.... */
public void initialize(String accountName int accountNumber,
double balance) {
this.accountName = accountName;
this.accountNumber = accountNumber;
this.balance = balance;

}
.

7/10/2001 (¢) 2001, University of Washington 141

7/10/2001 (¢) 2001, University of Washington 142

Using method initialize

Il create new checking account and initialize
BankAccount checking = new BankAccount();
checking.initialize(“Bill Gates”, 1, 30000000000.17);

*Good idea? Why or why not?

Creating Objects with Initial Values

7/10/2001 (¢) 2001, University of Washington 143

*We've already done this:
Rectangle rect = new Rect(100,50,250,30);
Rectangle anotherOne = new Rect(50,100,100,100,Color.blue,true);
Line segment = new Line(100,100, 200,100);

* How can we do this for our own objects (classes)?

7/10/2001 (¢) 2001, University of Washington 144

Constructors

* A constructor is a special sort of method
* Method name is the same as the class name
« No result type (and no void)

+ Called automatically whenever an instance of the class is created
class BankAccount {

[** construct new BankAccount with given account number, name,
*and initial balance. */
public BankAccount(String accountName int accountNumber, double balance) {
this.accountName = accountName;
this.accountNumber = accountNumber;
this.balance = balance;

}

Multiple Constructors (1)

7/10/2001 (¢) 2001, University of Washington 145

+ A class can contain more than one constructor
* Must be some difference in number or types of parameters
« Constructor with matching parameter list called automatically when
an instance of the class is created
« Technical term: method (or constructor) overloading
class BankAccount {

[** construct new BankAccount with given account number, a balance
*of 0, and a name that's a null string. */
public BankAccount() {

this.accountName = *;

this.accountNumber = 0;

this.balance = 0.0;

}

7/10/2001 (¢) 2001, University of Washington 146

Multiple Constructors (2)

class BankAccount {

[** construct new BankAccount with given account number, a balance

*of 0, and a name that's a null string. */

public BankAccount() { ...}

[** construct new BankAccount with given account number, name,

*and initial balance. */

public BankAccount(String accountName int accountNumber, double balance) { ... }

}
» Which constructor is called?

BankAccount checking = new BankAccount(“Bill Gates”, 1, 30000000000.17);
BankAccount savings = new BankAccount();

Field Access

7/10/2001 (c) 2001, University of Washington 147

+ Instance variables are also object fields
* So we can do things like this
BankAccount leaky = new BankAccount(“Life Savings”, 1001, 12846.55);
leaky.deposit(100.0);
leaky.balance = leaky.balance - 100000.00;
leaky.accountNumber = -1;

* Good idea? Why or why not?

7/10/2001 (¢) 2001, University of Washington 148

Information Hiding

Field Access Revisited

+ We would like to “protect” instance variables so they can only be
changed, or even accessed by appropriate methods in the class
+ Reduce chances of corrupting instance data
* Minimize scope of bugs (if an instance variable has a bogus value, the problem
can be localized to methods in the class)
* Mechanism: declare instance variables with private access
class BankAccount {

private double balance; Il account balance in dollars
privateint accountNumber; I account number
private String accountName; Il account owner's name

I** construct new BankAccount */

« If the BankAccount instance variables are private, which of
these are legal? Why or why not?

BankAccount safe = new BankAccount(“Life Savings”, 1001, 12846.55);
safe.deposit(100.0);

safe.balance = safe .balance - 100000.00;

double amount = safe .withDraw(100000.00);

safe.accountNumber = -1;

public Bank ing accountName int , double balance) {
this.accountName = accountName; Il ok
}
}
7/10/2001 (¢) 2001, University of Washington 149

7/10/2001 (¢) 2001, University of Washington 150

public vs private

Accessor Functions

+ Any member of a class (method or instance variable) can be
specified public or private
« public: member is accessible to any client code that can access the
class or its instances
* private: member is accessible only to methods and code inside the
class
« If neither, access is basically public
* Guidelines (good practices)
« public: methods that are part of the class interface

« private: all instance variables and any methods that are not part of
the class interface

« If client code needs access to an instance variable, provide
methods to allow this

class BankAccount {
private double balance; Il account owner's name

[+ return account balance... . */

public String getAccountName() { return this.balance; }

[setaccount balance ... */

public void setAccountName(double balance) {
this.balance = balance;

7/10/2001 (¢) 2001, University of Washington 151

Private Methods

« If a method is used in the class implementation, but is not
part of the interface, it should be private (Why?)

class BankAccount {

I** construct new BankAccount */

public BankAccount() { this.initialize(*", 0, 0.0); }

[+ construct new BankAccount */

public BankAccount(String accountName int accountNumber, double balance) {
this.initialize(accountName, accountNumber, balance); }

Il set this account's name, account number, and balance
private initialize(String accountName, int accountNumber, double balance) {
this.accountName = accountName;

-
}

7/10/2001 (¢) 2001, University of Washington 153

}
}
*Good idea? Why or Why Not?
7/10/2001 (c) 2001, University of Washington 152
Summary
+ Constructors

+ Guaranteed initialization when instances are created

* Multiple definitions with different parameters lists possible
* Information hiding

* public/private

* Robustness, security

7/10/2001 (¢) 2001, University of Washington 154

