
1

8/7/2001 (c) 2001, University of Washington 297

CSE 142 Summer 2001

2-D Arrays – an Example
[Corrected Version – Same Great Example,

Way Fewer Bugs]

8/7/2001 (c) 2001, University of Washington 298

Introduction
• Review:

• 2-D arrays

• Today:
• A game application

8/7/2001 (c) 2001, University of Washington 299

Representing a Chess Board
• A 2-D array is a natural representation for many games
• Example: chess (simplified – all pieces the same color)

class Chess {
// pieces that can be stored on the chessboard
public static final int EMPTY = 0; // empty square
public static final int PAWN = 1; // pawn
…
public static final int QUEEN = 100; // queen
// size of chessboard
public static final int SIZE = 8;
// chessboard
private int[][] board = new int[SIZE][SIZE]; // omit constructor to

// save space…

8/7/2001 (c) 2001, University of Washington 300

Chess Board Representation
• Picture:

8/7/2001 (c) 2001, University of Washington 301

Chess Board Processing
• A queen on a chessboard can capture any piece in any

direction, provided there are no other pieces between the
queen and the other piece

• Question: Given a location on the chessboard, is it
threatened by a queen?

• How would we attack this problem?

8/7/2001 (c) 2001, University of Washington 302

Search Right
// return true if there is a queen to the right of board[row][col] that threatens
// that square
public boolean threatenedRight(int row, int col) {

// search to the right until we find a non-blank square or run off the edge

// if we found a queen, return true, else return false

}

2

8/7/2001 (c) 2001, University of Washington 303

Aside – Short Circuit Evaluation
• Way back we mentioned that && and || only evaluate their

right arguments if necessary
• We’re relying on this in the condition on the while statement

while (c < Chess.SIZE && board[r][c] == Chess.EMPTY) {
c++

}

• Referencing board[r][c] will produce an index out of bounds error if
c>= Chess.SIZE, so order of test is important

Bug: while (board[r][c] == Chess.EMPTY && r < Chess.SIZE) …

8/7/2001 (c) 2001, University of Washington 304

Search Up
// return true if there is a queen above board[row][col] that threatens
// that square
public boolean threatenedUp(int row, int col) {

// search up until we find a non-blank square or run off the edge

// if we found a queen, return true, else return false

}

8/7/2001 (c) 2001, University of Washington 305

Search Left
// return true if there is a queen to the left of board[row][col] that threatens
// that square
public boolean threatenedLeft(int row, int col) {

// search to the left until we find a non-blank square or run off the edge
int r = row; int c = col-1;
while (c >= 0 && board[r][c] == Chess.EMPTY) {

c—
}

// if we found a queen, return true, else return false
return (c >= 0 && board[r][c] == Chess.QUEEN);

}

8/7/2001 (c) 2001, University of Washington 306

Search Down to the Right
// return true if there is a queen down to the right of board[row][col] that threatens
// that square
public boolean threatenedDownRight(int row, int col) {

// search down right until we find a non-blank square or run off the edge
int r = row+1; int c = col+1;
while (c < Chess.SIZE && r < Chess.SIZE && board[r][c] == Chess.EMPTY) {

r++; c++;
}

// if we found a queen, return true, else return false
return (c < Chess.SIZE && r < Chess.SIZE && board[r][c]==Chess.QUEEN);

}

8/7/2001 (c) 2001, University of Washington 307

Department of Redundancy Department
• Lots of common structure in these searches
• What’s different?
• Can we factor out the differences and write one set of code?

8/7/2001 (c) 2001, University of Washington 308

Direction Abstraction
• The differences is that each of the searches has a different +1, 0, -1

increment for the row and column numbers, and corresponding bounds
test

• We really want to perform one search, parameterized by direction
for (int direction = 0; direction < 7; direction++) {

int r = …; int c = …;
while (the next square in the current direction on the board and empty) {

increment r and c in that direction;
}
if (r and c are on the board and board[r][c] is a queen) {

return “this square is threatened”
}

}

3

8/7/2001 (c) 2001, University of Washington 309

Deltas
• We can store the different increments in a table. Definitions:

deltaR[direction] is the row increment in that direction
deltaC[direction] is the column increment in that direction

• In Java (using new syntax to initialize the arrays all at once)
int[] deltaR = {-1, -1, 0, +1, +1, +1, 0, -1};
int[] deltaC = { 0, +1, +1, +1, 0, -1, -1, -1};

8/7/2001 (c) 2001, University of Washington 310

Bounds Function
• This is worth isolating in a separate function so it can be

reused
// return true if row, col is on the board, otherwise return false
boolean inBounds(int row, int col) {

return (row >= 0 && row < Chess.SIZE && col >= 0 && col < Chess.SIZE);
}

8/7/2001 (c) 2001, University of Washington 311

Parameterized Search
// return true if there is a queen that threatens board[row][col]
public boolean threatened(int row, int col) {

for (int d = 0; d < 8; d++ {
if (threatenedInDirection(d, row, col)) {

return true;
}

// no threats
return false;

}

8/7/2001 (c) 2001, University of Washington 312

Parameterized Search
// return true if there is a queen that threatens board[row][col] in direction d
public boolean threatenedInDirection(int d, int row, int col) {

// calculate row, column of neighboring square in direction d
int r = row + deltaR[d];
int c = col + deltaC[d];
// search in direction d
while (inBounds(r, c) && board[r][c] == Chess.EMPTY) {

r = r + deltaR[d];
c = c + deltaC[d];

}
return (inBounds(r, c) && board[r][c] == Chess.QUEEN);

}

• Notice that we are relying on the short-circuit evaluation of && in an
essential way

