
1

8/1/2001 (c) 2001, University of Washington 266

CSE 142 Summer 2001

Arrays

8/1/2001 (c) 2001, University of Washington 267

Introduction
• Quick Review:

• Collection classes: ArrayList

• Today:
• Primitive collections – arrays
• Using arrays to implement higher-level collection classes

8/1/2001 (c) 2001, University of Washington 268

What is an ArrayList?
• ArrayList objects are fairly sophisticated

• Contain 0 or more objects

• Can retrieve or delete any object in the collection

• Can report how many objects there are, what’s in the collection

• How is this implemented?
• We’ve already gotten some idea from drawing the pictures…

8/1/2001 (c) 2001, University of Washington 269

Java Arrays
• The Java language provides arrays

• Simple, ordered collections

• Elements of a particular array all have the same type

• Indexed (direct) access to elements
• Size fixed when array is created

8/1/2001 (c) 2001, University of Washington 270

Java Arrays
• Example

String[] friends = new String[3];
friends[0] = “Sally”;
friends[1] = “Puff”;
friends[2] = “Spot”
if (friends[2].equals(“cat”) {

System.out.println(“Something’s broken!!!”)
}

• Draw the picture!

8/1/2001 (c) 2001, University of Washington 271

Array Declaration and Creation
• Array declarations have additional syntax to indicate arrays

are involved, but are otherwise like before
<element type>[] <array name> = new <element type> [<capacity>];

• Details
• Arrays can only hold elements of the specified type

(can create arrays of generic Objects if you want, but normally you don’t…)

• <capacity> is any integer expression – value should be > 0
(doesn’t need to be a constant)

• As with other variables, can separate declaration from initialization
(fairly common with arrays that are object instance variables)

2

8/1/2001 (c) 2001, University of Washington 272

Array Element Access
• Access an array element using the array name and position

<array name> [<position>]

• <position> is any integer-valued expression, but MUST be in the
range 0 to array capacity minus 1
•If not, KABOOM!!!!

• <position> is often called an index or subscript

• An array element is a variable and can be used anywhere a name of
that type may appear
if (friends[2].equals(“Ichiro”)) {

System.out.println(“Go ” + friends[2] + “!!!”);
}

8/1/2001 (c) 2001, University of Washington 273

Array Length
• Arrays are a (somewhat peculiar) kind of object

• Allocated like other objects (new)

• Special syntax

• If arr is an array, the member arr.length is it’s capacity
(allocated size)

8/1/2001 (c) 2001, University of Washington 274

Arrays and Iteration
• Arrays are very low level – don’t have iterators
• Sequential access usually involves for loops
• Example: Assume that vector is an array of doubles. Print

the sum of the values in vector.
• Solution

8/1/2001 (c) 2001, University of Washington 275

Exercise
• Search array for a string and return its position

// return position of aString in names if found, otherwise return –1
int indexOf(String[] names, String aString) {

}

8/1/2001 (c) 2001, University of Washington 276

Implementing Containers
• Example: Implement an ArrayList-like class that contains a

list of Strings. Specification:
class StringList { // a list of strings

StringList(int capacity); // create new StringList with given capacity
boolean isEmpty(); // = “this StringList is empty”
boolean isFull(); // = “this StringList is full”
int size(); // = # of Strings in this StringList
boolean add(String str); // add str to this StringList, result true if success
boolean contains(String str); // = “this StringList contains str”
String get(int pos); // return String at given position
String remove(int pos); // return String at given position and remove

// it from this StringList

8/1/2001 (c) 2001, University of Washington 277

StringList Representation
• Underlying Representation is an array of Strings

• Size is fixed when it is created

• Need additional variable to keep track of how many Strings
have actually been added so far

class StringList { // a list of strings
// instance variables
private String[] strings; // Strings in this StringList are stored in
private int size; // strings[0] through strings[size-1]
…

}

3

8/1/2001 (c) 2001, University of Washington 278

StringList Constructor
• Need to allocate the actual array and initialize the StringList to “empty”

class StringList { // a list of strings
private String[] strings; // Strings in this StringList are stored in
private int size; // strings[0] through strings[size-1]

// Construct new empty StringList with given capacity
public StringList(int capacity) {

}
}

8/1/2001 (c) 2001, University of Washington 279

Method add
• Gotcha – what do we do if there’s no more room?

/** Add new String to this StringList if there is room.
* @param str String to be added
* @return True if str was added successfully, otherwise false */
public boolean add(String str) {

}

8/1/2001 (c) 2001, University of Washington 280

size, isEmpty, isFull
• These are pretty simple…

/** = number of elements in this StringList */
public int size() {

}

/** = "this StringList is empty" */
public boolean isEmpty() {

}

/** = "this StringList is full" */
public boolean isFull() {

}

8/1/2001 (c) 2001, University of Washington 281

contains
/** = "This StringList contains str" */
public boolean contains(String str) {

}

8/1/2001 (c) 2001, University of Washington 282

get
• Must absolutely guarantee that this doesn’t crash when called –

regardless of any bogus position given
/** Return the string stored at at position pos in this StringList, or null if pos

is out of bounds */

public String get(int pos) {

}

8/1/2001 (c) 2001, University of Washington 283

remove
• Like get, must not blow up if given pos is bad
• Also, need to fill in the “hole” created if something is removed

/** Remove the string stored at position pos in this StringList. Return the removed String,
or null if pos is out of bounds. */

public String remove(int pos) {

}

4

8/1/2001 (c) 2001, University of Washington 284

Array Summary
• Arrays are the fundamental low-level collection type built in

to the Java language
• Also found in essentially all interesting programming languages

• Size fixed when created
• Indexed access to elements
• Normally used to implement higher-level, richer container

types
• More convenient for users

• Less error prone than raw arrays

