
1

8/3/2001 (c) 2001, University of Washington 285

CSE 142 Summer 2001

2-D Arrays

8/3/2001 (c) 2001, University of Washington 286

Introduction
• Review:

• Simple Arrays

• Today:
• 2-D arrays
• Array traversals and processing

8/3/2001 (c) 2001, University of Washington 287

Review – Arrays in Java
• Simple, ordered collections
• Elements of a particular array all have the same type
• Size fixed when array created

Rectangle[ ] rects = new Rectangle[42+17];

• Indexed (direct) access to elements
rects[3] = new Rectangle( );
rects[3].move(10, 20);

8/3/2001 (c) 2001, University of Washington 288

2-D Arrays
• Suppose we want to represent a picture

(Disclaimer: simple-minded representation for lecture purposes.)

• Want a rectangular array of Colors
• Declaration & creation

static final int NROWS = 8;
static final int NCOLS = 8;
Color[ ][ ] picture = new Color[NROWS][NCOLS];

• Similar to 1-D array, but we specify two dimensions

8/3/2001 (c) 2001, University of Washington 289

2-D Arrays
• Draw the picture

static final int NROWS = 8;
static final int NCOLS = 8;
Color[ ][ ] picture = new Color[NROWS][NCOLS];

8/3/2001 (c) 2001, University of Washington 290

Array Element Access
• Terms: rows and columns
• Traditionally, the first subscript is the row #, the second is the 

column #
picture[3][2] = Color.red;
picture[1][0] = Color.blue;
picture[4][4] = Color.green;

• Which array elements do these refer to?

• (Aside: There are applications where it makes sense to think of first 
subscript as horizontal position and second subscript as vertical, but 
we’ll stick with rows/columns for now.)



2

8/3/2001 (c) 2001, University of Washington 291

Real Representation of 2-D Arrays
• Actual representation in Java* is an array of 1-D arrays
• When we write

double[ ][ ] grid = new double[3][5];

Java actually does this
double[ ][ ] grid = new double[3][ ];
for (int k = 0; k < 3; k++) {

grid[k] = new double[5];
}

• Draw the picture

*In languages like FORTRAN and C/C++, 2-D arrays are really just a grid

8/3/2001 (c) 2001, University of Washington 292

Does the Actual Representation Matter?
• Normally no – Most of the time we think of a 2-D array as a 

rectangular grid
• Main reason to be aware of this is row and column lengths:

double[ ][ ] grid = new double[3][5];

grid.length => 3 // # of rows (# elements in 1st dimension)
grid[0].length => 5 // length of row 1

• Obvious question: Can rows have different lengths?
• (Maybe not obvious) answer: 

8/3/2001 (c) 2001, University of Washington 293

2-D Array Traversal
• Typical traversal is to go through the rows and, for each row, 

go through the columns (known as row-major order; column-
major order is another possibility)

• Example of row-major order:
// Set all Colors in picture to Color.Red
public void makeRed(Color[ ][ ] picture) {

for (int row = 0; row < picture.length; row++) {
for (int col = 0; col < picture[row].length; col++) {

picture[row][col] = Color.red;
}

}
}

8/3/2001 (c) 2001, University of Washington 294

2-D Array Traversal - Trace
• Trace it!

// Set all Colors in picture to Color.Red
public void makeRed(Color[ ][ ] picture) 
{

for (int row = 0; 
row < picture.length; row++) {

for (int col = 0; 

col < picture[row].length; 
col++) {

picture[row][col] =
Color.red;

}
}

}

8/3/2001 (c) 2001, University of Washington 295

Exercise: Shift Picture to Left
// Slide picture to the left 1 column; fill last column with Color.white
public void makeRed(Color[ ][ ] picture) {

for (int row = 0; row < ____________________ ; row++) {
for (int col = 0; col < ________________________ ; col++) {

picture[row][col] = ______________________;

}

}

}

8/3/2001 (c) 2001, University of Washington 296

Exercise: Shift Picture Down
// Slide picture down 1 column; fill first row with Color.black
public void makeRed(Color[ ][ ] picture) {

}

• Hint: row-major order might not be the right approach


