
U-1

U-1

University of Washington
Computer Programming I

Nested Data Structures

© 2000 UW CSE

U-2

Overview

Data types of C

structs within structs

Arrays of structs

structs containing arrays

Sorting an array of structs

U-3

Data Types of C

Simple data types
int, double, char
Atomic chunks of data - cannot be
pulled apart into components

Composite data
Arrays
Structs

For many problems, an array or a struct
still not sufficient

U-4

Composite Data

Arrays

Sequence of variables all of the same type

structs

Collection of fields of possibly different
types

Key point: variables of any type can be a
component of an array or struct…

including an array or struct!

U-5

Nested structs - Example
typedef struct { /* a single point */

double x, y ;
} point ;

typedef struct { /* a size */
double width, height ;

} dimension ;

typedef struct { /* description of rectangle */
dimension size ;
point lower_left ;
int line_color, fill_color ;

} rectangle ;
U-6

Nested struct Layout
typedef struct {

double x, y ;
} point ;

typedef struct {
double width, height ;

} dimension ;
typedef struct {

dimension size ;
point lower_left ;
int line_color, fill_color ;

} rectangle ;

/* variable declaration */
rectangle r;

width
height

x
y

line_color

fill_color

lower_left

size

r

U-2

U-7

Field Selection
Use the . operator to
select a field.
If the field it itself a
struct, use . again to
select its
components

width
height

x
y

line_color

fill_color

lower_left

size

r

r
r.lower_left
r.lower_left.x

U-8

QUIZ: Calculating Types
rectangle R;
rectangle * rp;

R.size
R.lower_left
R.fill_color
R.lower_left.x
&R.lower_left.y
rp -> size
&rp -> lower_left
*rp.line_color
R -> size
rp -> size -> width

typedef struct {
double x, y ;

} point ;

typedef struct {

double width, height ;
} dimension ;

typedef struct {

dimension size ;
point lower_left ;
int line_color, fill_color ;

} rectangle ;

U-9

Structures and Arrays

A struct represents a single record

Typically, computer applications have to deal
with collections of such records

Examples: student records, employee
records, customer records, parts records

In each case we will have multiple instances
of one record (struct) type

Arrays of structs are the natural way to do this
U-10

Components in struct Arrays

point pentagon[5];

pentagon -- an array of points

x
y

x
y

x
y

x
y

x
y

pentagon[1] -- a point
structurex

y

pentagon[4].x -- a double

U-11

Arrays in structs

The fields in a struct can themselves be an array
Common example: strings (arrays of char)

#define MAX_NAME 40

typedef struct {

char name [MAX_NAME+1] ;
int id ;
double grade ;

int hw, exam;

} student_record ;
U-12

Component Access
Given a data structure,

If it’s an array, use subscripts ([]) to access an
element

If it’s a struct, use . to access a field
If the result is itself an array or struct, use .. or [] to

access components, as appropriate

student_record cse_142[MAX_STUDENTS];

What is student 0's hw?

answer: cse_142[0].hw

U-3

U-13

Using Arrays of structs

student_record class[MAX_STUDENTS] ;
...
/* read student hw and exams and calculate grade */
for (i = 0 ; i < nstudents ; i = i + 1)
{

scanf("%d %d", &class[i].hw, &class[i].exam) ;
class[i].grade =

(double) (class[i].hw + class[i].exam) / 50.0 ;
}

U-14

Type Quiz

StudentRecord a [MAX_STUDENTS];

typedef struct {
char name [MAX_NAME+1];
int id ;
double score ;

} StudentRecord ;

/*What is the type of each?*/

a a[0] a[5].name

a[4].id &a[6].score a[2].name[1]

a.score[0] StudentRecord[1]

U-15

Type Quiz

StudentRecord
a [MAX_STUDENTS];

typedef struct {
char name [MAX_NAME+1];
int id ;
double score ;

} StudentRecord ;

/*What is the type of
each?*/
a
a[0]
a[5].name
a[4].id
&a[6].score
a[2].name[1]
a.score[0]
StudentRecord[1]

U-16

Review: structs as Parameters

A single struct is passed by value
all of its components are copied from the argument
(actual parameter) to initialize the (formal)
parameter, even if they are arrays (unless you use
pointers explicitly)

point midpoint (point a, point b) {...}

int main (void) {
point p1, p2, m; /* declare 3 points */
...
m = midpoint (p1, p2);

}

U-17

Passing Arrays of structs

An array of structs is an array.
When any array is an argument (actual parameter),
it is passed by reference (not copied)

The parameter is an alias of the actual array
argument

int avg (student_rec class_db[MAX_N]) {...}
int main (void) {

student_rec cse_142[MAX_N];
int average;
....
average = avg (cse_142); /* by reference */

}
U-18

Sorting Arrays of structs

Jill
910607
3.6

Gill
900317
3.9

Phil
920914
2.8

Will
901028
4.0

Bill
920915
2.9

Bill
920915
2.9

Jill
910607
3.6

Gill
900317
3.9

Phil
920914
2.8

Will
901028
4.0

typedef struct {
char name [MAX_NAME + 1] ;
int id ;
double score ;

} StudentRecord ;

U-4

U-19

Review: Selection Sort
/* Sort b[0..n-1] in non-decreasing order

(rearrange elements in b so that
b[0]<=b[1]<=…<=b[n-1]) */

void sel_sort (int b[], int n) {
int k, m;
for (k = 0; k < n - 1; k = k + 1) {

m = min_loc(b,k,n);
swap(&b[k], &b[m]);

}
}

U-20

Helper for Selection Sort
/* Find location of smallest element in b[k..n-1] */
/* Returns index of smallest, does not return the

smallest value itself */
int min_loc (int b[], int k, int n) {

int j, pos; /* b[pos] is smallest element */
pos = k; /* found so far */
for (j = k + 1; j < n; j = j + 1)

if (b[j] < b[pos])
pos = j;

return pos;
}

/* Interchange values */
void swap (int * x, int * y);

U-21

Modifying for Array of StudentRecord

1. Decide which field to sort by: the
“sort key”

Let’s sort by score
2. Change array types to StudentRecord
3. Change comparison to pull out sort
key from the structs
4. Write a “swap” for StudentRecord

U-22

Selection Sort Helper Modified
/* Sort b[0..n-1] in non-decreasing order

(rearrange elements in b so that
b[0]<=b[1]<=…<=b[n-1]) */

void sel_sort (StudentRecord b[], int n) {
int k, m;
for (k = 0; k < n - 1; k = k + 1) {

m = min_loc(b,k,n);
swap(&b[k], &b[m]);

}
}

U-23

Selection Sort Modified

/* Find location of smallest element in b[k..n-1] */
/* Returns index of smallest, does not return the

smallest value itself */
int min_loc (StudentRecord b[], int k, int n) {

int j, pos; /* b[pos] is smallest element */
pos = k; /* found so far */
for (j = k + 1; j < n; j = j + 1)

if (b[j].score < b[pos].score)
pos = j;

return pos;
}

/* Interchange values */
void swap (StudentRecord * x, StudentRecord * y);

U-24

Alphabetical Order

Harry
910607
3.6

Sarah
900317
3.9

Phil
920914
2.8

Susan
901028
4.0

David
920915
2.9

typedef struct {
char name[MAX_NAME + 1];
int id;
double score;

} student_record;

Need a function to compare two strings!

David
920915
2.9

Harry
910607
3.6

Sarah
900317
3.9

Phil
920914
2.8

Susan
901028
4.0

U-5

U-25

Review: String Comparison

“Alice” is less than “Bob”
“Dave” is less than “David”
“Rob” is less than “Robert”

#include <string.h>
int strcmp (char str1[], char str2[])

returns negative integer if str1 is less than str2
0 if str1 equals str2
positive integer if str1 is greater than str2

U-26

Modified to Sort by Name

The only change from sorting by score is in the
function min_loc

int min_loc (StudentRecord b[], int k, int n) {
int j, pos; /* b[pos] is smallest element */
pos = k; /* found so far */
for (j = k + 1; j < n; j = j + 1)

if (0 > strcmp(b[j].name, b[pos].name))
pos = j;

return pos;
}

U-27

Data Structures: What If...
...you wanted to keep information about one

song on the computer.
What pieces of data would you want?
How would you organize them?
How would it look in C?

And then…
What if you wanted information about an

entire CD of songs?
And then… how about a whole collection of

CD's?

U-28

Summary
• Arrays and structs can be combined and nested

– to any level

• The separate rules for arrays and structs are
followed
– even when the two ideas are combined
– 2-D arrays and strings can be used, too

• An infinite number of data structures can be
created!
– design a structure appropriate to a particular

programming problem

