
Q-1

Q-1

CSE 142
Computer Programming I

Sorting

© 2000 UW CSE Q-2

Overview

Sorting defined
Algorithms for sorting
Selection Sort algorithm
Efficiency of Selection Sort

Q-3

Sorting
The problem: put things in order

Usually smallest to largest: “ascending”
Could also be largest to smallest:
“descending”

Lots of applications!
ordering hits in web search engine
preparing lists of output
merging data from multiple sources
to help solve other problems

faster search (allows binary search)
too many to mention!

Q-4

Sorting: More Formally
Given an array b[0], b[1], ... b[n-1],
reorder entries so that
b[0] <= b[1] <= ... <= b[n-1]

Shorthand for these slides: the notation array[i..k]
means all of the elements
array[i],array[i+1]...array[k]
Using this notation, the entire array would be:
b[0..n-1]

P.S.: This is not C syntax!

Q-5

Sorting Algorithms

Sorting has been intensively studied for decades
Many different ways to do it!
We’ll look at only one algorithm, called
“Selection Sort”

Other algorithms you might hear about in
other courses include Bubble Sort, Insertion
Sort, QuickSort, and MergeSort. And that’s
only the beginning!

Q-6

Sorting Problem

What we want: Data sorted in order

sorted: b[0]<=b[1]<=…<=b[n-1]

0 n

b

unsorted

0 n

b

Initial conditions

Q-2

Q-7

General situation

Selection Sort

smallest elements, sorted

0 k n

b remainder, unsorted

Strategy of the algorithm:

Grow the blue area, shrink the pink area
Q-8

Selection Sort

smallest elements, sorted

0 k n

b x

Step:

Find smallest element x in b[k..n-1]

Swap smallest element with b[k], then increase k

Q-9

Subproblem: Find Smallest

/* Find location of smallest element in b[k..n-1] */
/* Assumption: k < n */
/* Returns index of smallest, does not return the

smallest value itself */

int min_loc (int b[], int k, int n) {
int j, pos; /* b[pos] is smallest element */

/* found so far */
pos = k;
for (j = k + 1; j < n; j = j + 1)

if (b[j] < b[pos])
pos = j;

return pos;
}

Q-10

Code for Selection Sort
/* Sort b[0..n-1] in non-decreasing order

(rearrange elements in b so that
b[0]<=b[1]<=…<=b[n-1]) */

void sel_sort (int b[], int n) {
int k, m;
for (k = 0; k < n - 1; k = k + 1) {

m = min_loc(b,k,n);
swap(&b[k], &b[m]);

}
}

Q-11

-17 12 -5 6 142 21 3 45b

-17 -5 12 6 142 21 3 45b

3 12 -5 6 142 21 -17 45b

min_loc

min_loc

min_loc

Example

Q-12-17 -5 3 6 12 21 142 45b

-17 -5 3 6 142 21 12 45b

-17 -5 3 6 142 21 12 45b

min_loc

min_loc

min_loc

Example (cont.)

Q-3

Q-13

Example (concluded)

-17 -5 3 6 12 21 45 142b

-17 -5 3 6 12 21 142 45b

min_loc

Q-14

Sorting Analysis
How many steps are needed to sort n things?

For each swap, we have to search the remaining
array

length is proportional to original array length n
Need about n search/swap passes
Total number of steps proportional to n2

Conclusion: selection sort is pretty expensive
(slow) for large n

Q-15

Can We Do Better Than n2?

Sure we can!
Selection, insertion, bubble sorts are all
proportional to n2

Other sorts are proportional to n log n
Mergesort, Quicksort, etc.

log n is considerably smaller than n, especially
as n gets larger

(remember: linear search’s time is proportional to n;
binary search’s is proportional to log n)

As the problem size grows, the time to run a n2

sort will grow much faster than an n log n one.

Q-16

Any better than n log n?

In general, no. But in special cases, we
can do better
Example: Sort exams by score: drop
each exam in one of 101 piles; work is
proportional to n

Curious fact: efficiency can be studied
and predicted mathematically, without
using a computer at all!

Q-17

Comments about Efficiency
Efficiency means doing things in a way
that saves resources

Usually measured by time or memory
used

Many small programming details have
little or no measurable effect on efficiency
The big differences comes with the right
choice of algorithm and/or data structure

Q-18

Efficiency:
Not Always What You Expect!

Myth: I should make everything efficient!
Imagine spending hours optimizing a binary search for
an array you search only once. What’s the problem?

Myth: It’s the details that really matter… like using
chars to represent small numbers instead of ints!
Imagine you need to send a huge amount of data from
your headquarters in Denver to your printer 15 miles
away. What’s the FASTEST way?
(From Jon Bentley’s Programming Pearls)

Q-4

Q-19

Summary
Sorting means placing things in order
Selection sort is one of many
algorithms

At each step, finds the smallest remaining
value

Selection sort requires on the order of
n2 steps

There are sorting algorithms which are
greatly more efficient
It’s the algorithm that makes the difference,
not the coding details

Q-20

QOTD: Sorting as you go
Sometimes arrays grow one element at a time.
You could add each element so that the array
is always in sorted order. Then you don’t have
to stop and sort the array later.

Example: the array of players in HW5

Write an addToPlayerArray function which
inserts the new player in the array, maintaining
alphabetical order by player name.

What complication will there be to your search in this array?

