
O-1

O-1

CSE 142
Computer Programming I

Arrays

© 2000 UW CSE O-2

Overview

Concepts this lecture
Data structures
Arrays
Subscripts (indices)

O-3

Chapter 8

8.1 Declaration and Referencing

8.2 Subscripts

8.3 Loop through arrays

8.4 & 8.5 Arrays arguments and parameters

8.6 Example

O-4

Rainfall Data Revisited

General task:  Read daily rainfall amounts and 
print some interesting information about them.

Input data: Zero or more numbers giving daily 
rainfall followed by a negative number (sentinel).

Example input data:  
0.2  0.0  0.0  1.5  0.3  0.0  0.1  -1.0

Empty input sequence: 
-1.0

O-5

Rainfall Analysis
Possible things to report:

How many days worth of data are there?
How much rain fell on the day with the most 
rain?
On how many days was there no rainfall?
What was the average rainfall over the 
period?
On how many days was the rainfall above 
average?
What was the median rainfall?

Thought question: Can we do all of these with 
the Read Until Sentinel pattern, i.e., in one pass? O-6

Rainfall Analysis (cont)

For some tasks (median, number of days above 
average), we need to have all the data before we 
can do the analysis.

Where do we store the data?
Lots of variables (rain1, rain2, rain3, rain4, …)?

Awkward
Doesn’t scale

Need something better



O-2

O-7

Data Structures

Functions give us a way to organize programs.
Data structures are needed to organize data, 

especially:
large amounts of data
variable amounts of data
sets of data where the individual pieces are 

related to one another
In this course, we will structure data using

arrays
structs
combinations of arrays and structs O-8

Arrays
Definition: A named, ordered collection of 
variables of identical type

Name the collection (rain); number the elements
(0 to 6)

0

6

.

.

.

1.0
0.2
0.0
0.0
1.4
0.1
0.0

double 
rain[7];

1

Example:  rainfall for one week

O-9

Accessing Variables

Variable access:

rain[0] is  1.0

rain[6]  is  0.0

2.0∗rain[4]is 2.8

.

0

6

.

.

.

1.0
0.2
0.0
0.0
1.4
0.1
0.0

double 
rain[7];

1

Rainfall for one week

O-10

Array Declaration Syntax

type name[size]; 

double rain[7];

array declaration

size must be an int constant

O-11

Array Terminology

double rain[7];

rain is of type array of double with size 7.

rain[0], rain[1], ... , rain[6] are the  elements of 
the array rain.   Each is a variable of type 
double.

0,1, ... , 6 are the indices of the array.  Also 
called subscripts.

The bounds are the lowest and highest values 
of the subscripts (here: 0 and 6).

O-12

Rainfall Analysis (cont.)

Strategy for processing data if we need all of it 
before we can process it:

1. Read data and store it in an array

2. Analyze data stored in the array

Key detail: In addition to the array, we need to 
keep track of how much of the array 
currently contains valid data.



O-3

O-13

Keeping Track of Elements In-Use
Since an array has to be declared a fixed size, 

you often declare it bigger than you think 
you’ll really need

#define MAXRAINDAYS 400 
int rain[MAXRAINDAYS];

How do you know which elements in the array 
actually hold data, and which are unused 
extras?

1. Keep the valid entries together at the front
2. Record number of valid entries in a separate 
variable O-14

Keep the valid entries together

rain
0

MAX RAIN DAYS - 1

6
7

numRainDays

7

for (k=0; k < numRainDays; k++) {
/* process rain[k] */

}

! ! ! !

O-15

Print # Days Above Average

Algorithm:
Read data into an array
Compute average rainfall (from array)

Keeping track of total # of days
Count # days above average (from array)
Print result

O-16

Declarations

/* Maximum # of days of input data */
#define MAXRAINDAYS 400 
int main(void) {       /* rainfall data is stored in */

/* rain[0..numRainDays-1] */
double rain[MAXRAINDAYS];
int numRainDays ;
double rainfall; /* current input value */
double rainTotal;        /* sum of input rainfall values */
double rainAverage;   /* average rainfall   */

/* # days with above average rainfall */
int numAbove;
int k;

O-17

Read Data Into Array

/* read and store rainfall data */
printf("Please enter rainfall data.\n");
numRainDays = 0;
scanf("%lf", &rainfall);
while (rainfall >= 0.0) {

rain[numRainDays] = rainfall;
numRainDays++;
scanf("%lf", &rainfall);

}
O-18

Calculate Average

/* calculate average rainfall */
rainTotal = 0;
for (k = 0; k < numRainDays; k++) {

rainTotal = rainTotal + rain[k];
}
rainAverage = rainTotal / numRainDays;

double rain[MAXRAINDAYS];   /* rainfall data*/
int numRainDays; /* # of data values */
double rainTotal; /* sum of input values*/
double rainAverage; /* average rainfall*/
int k;

We should make a test to 
avoid a divide by zero



O-4

O-19

Calculate and Print Answer

/* count # of days with rainfall above average */
numAbove = 0;
for (k = 0; k < numRainDays; k++) {

if (rain[k] > rainAverage)
numAbove++;

} /* Print the result */
printf("%d days above the average of %.3f.\n",  

numAbove, rainAverage);

double rain[MAXRAINDAYS];   /* rainfall data*/
int numRainDays; /* # of data values */
double rainAverage; /* average rainfall */
int numAbove; /* # of days above average */
int k;

O-20

Index Rule
Rule: An array index must evaluate to an int 
between 0 and n-1, where n is the number of 
elements in the array. No exceptions!

Example:
rain[i+3+k]         /* OK as long as 0 ≤ i+3+k ≤ 6 */

The index may be very simple
rain[0]

or incredibly complex
rain[(int) (3.1 * fabs(sin (2.0*PI*sqrt(29.067))))]

Do you think C will help you with this?

Do you think it should?

O-21

C Array Bounds are Not Checked

#define DAYS_IN_WEEK 7

double rain[DAYS_IN_WEEK] ;
int index ;
index = 900 ;
...
rain[index ] = 3.5 ;        /* Is index out of range?? */

You need to be sure that the subscript value is in 
range.  Peculiar and unpleasant things can (and 
probably will) happen if it isn’t.

O-22

Technicalities
An array is a collection of variables
Each element can be used wherever a simple 
variable of that type is allowed.

Assignment, expressions, input/output
An entire array can’t be treated as a single 
variable in C

Can’t assign or compare arrays using =, ==, <, 
…
Can’t use scanf or printf to read or write an 
entire array
But, you can do these things one element at a 
time.

O-23

“Parallel” Arrays
A set of arrays may be used in parallel when more 
than one piece of information must be stored for 
each item.

Example: we are keeping track of a group of 
students.  For each item (student), we might have 
several pieces of information such as scores

O-24

Parallel Arrays Example

Suppose we have a midterm grade, final exam 
grade, and average score for each student.
#define MT_WEIGHT 0.30
#define FINAL_WEIGHT 0.70
#define MAX_STUDENTS 200
int num_students, 

midterm[MAX_STUDENTS],
final[MAX_STUDENTS] ;

double score[MAX_STUDENTS] ;



O-5

O-25

Parallel Arrays Example

/* Suppose we know the value of  num_students, 
have read student i’s grades for midterm and 
final, and stored them in midterm[i] and final[i].  
Now:

Store a weighted average of exams in array 
score. */

for ( i = 0 ;   i < num_students;   i = i + 1 )  {

score[i] = MT_WEIGHT * midterm[i] + 

FINAL_WEIGHT * final[i] ;

}
O-26

Array Elements as Parameters
Individual array elements can be used as 
parameters, just like other simple variables.  
Examples:

printf( "Last two are %f, %f", rain[5], rain[6] ) ;

draw_house( color[i], x[i], y[i], windows[i] ) ;

scanf( "%lf",  &rain[0] ) ;

swap( &rain[i], &rain[i+1] ) ;

O-27

Whole Arrays as Parameters

Array parameters (entire arrays) work 
differently:

An array is never copied (no call by value)
The array name is always treated as a 
pointer parameter
The & and * operators are not used

Programming issue: in C, arrays do not contain 
information about their size, so the size often 
needs to be passed as an additional parameter.

O-28

Array Parameter Example
#define ARRAY_SIZE  200
double average ( int a[ARRAY_SIZE] )  {

int i, total = 0 ;
for ( i = 0 ;  i < ARRAY_SIZE ;  i = i + 1 )

total = total + a[i] ;
return ((double) total /  (double) ARRAY_SIZE) ;

}

int x[ARRAY_SIZE] ; 
...
x_avg = average ( x ) ;

O-29

Picture

#define ARRAY_SIZE  200
double average (

int a[ARRAY_SIZE] )  {
int i, total = 0 ;
for ( i = 0 ;  i < ARRAY_SIZE ;            

i = i + 1 )
total = total + a[i] ;

return ((double) total /    
(double) ARRAY_SIZE) ;

}

int x[ARRAY_SIZE] ; 
...
x_avg = average ( x ) ;

caller

x

average

a          i     total

O-30

/* Set vsum to sum of  vectors a and b. */
void vectorSum( int a[3], int b[3], int vsum[3] )  {

int i ;
for ( i = 0 ;  i < 3 ;  i = i + 1 )

vsum[i] = a[i] + b[i] ;
}

int main(void)  {
int x[3] = {1,2,3}, y[3] = {4,5,6}, z[3] ;
vectorSum( x , y , z );
printf( "%d %d %d", z[0], z[1], z[2] ) ;

}

Vector Sum Example

note: 
no *
no &



O-6

O-31

Usually the size is omitted in an array 
parameter declaration.

/* sum the vectors of the given length */
void vectorSum( int a[ ] , int b[ ] , int vsum[ ] , 

int length)  {
int i ;
for ( i = 0 ;  i < length ;  i = i + 1 )

vsum[i] = a[i] + b[i] ;
}

int x[3] = {1,2,3}, y[3] = {4,5,6}, z[3] ;
vectorSum( x , y , z , 3 );

General Vector Sum

O-32

Bonus Topic: Initializing Arrays

Review: "Initialization" means giving something 
a value for the first time.
General rule: variables have to be initialized 

before their value is used.
Review: Various ways of initializing

assignment statement
scanf (or other function call using &)
initializer when declaring
parameters (initialized with argument values)

O-33

Array Initializers
int w[4] = {1, 2, 30, -4};

/*w has size 4, all 4 are initialized */

char vowels[6]  = {’a’, ’e’, ’I’, ’o’, ’u’};

/*vowels has size 6, only 5 have initializers */

/* vowels[5] is uninitialized */

Caution: cannot use this notation in assignment 
statement:

w = {1, 2, 30, -4}; /*SYNTAX ERROR */

Now the mystery of that midterm #1 
question becomes clear!

O-34

Incomplete Array Size

double x[ ] = {1.0, 3.0, -15.0, 7.0, 9.0};

/*x has size 5, all 5 are initialized */

But:

double x[ ]; /* ILLEGAL */

O-35

Summary
Arrays hold multiple values

All values are of the same type

Notation: [i ] selects one array element
[0] is always the first element
C does not check array bounds!

Especially useful with large amounts of data
Often processed within loops
Entire array can be passed as a parameter O-36

QOTD: (Un)Arrayed for Battle
Like pointers, arrays are dangerous programming constructs. Small mistakes can 
lead to disastrous and difficult to detect errors. Moreover, C will blithely stand by as 
you make many of these errors!

Which of these are errors according to C? Which are warnings in MSVC? Can you 
think of any other array dangers?

– int length = 5;
int elts[length];

– int parallelArray1[SIZE], parallelArray2[SIZE];
/* Set first elt of the parallel arrays to (2, 4). (?) */
parallelArray1[0] = 2; parallelArray2[1] = 4;  

– int elts[SIZE];
for (i = 0; i <= SIZE; i++)   /* Initialize the array. */

elts[i] = 0;

– int elts[SIZE];
elts[0] = ‘X’;

– int elts[SIZE];
scanf(“%d”, elts);

– int elts[SIZE], 
numElts;

elts[0] = 1; numElts++;

Hint: is there a surefire way you can test these?



O-7

O-37

Bonus QOTD!
Parallel Arrays in HW4

What data in HW4 can be represented as a set of 
parallel arrays?

What is each "column"?  What is each "row"?

What functions now need to have array 
parameters?

Find where those functions are called.  How 
will the call be different?


