
1

A-1
5/9/01

CSE142
Computer Programming I

Following the Way:
Program Style

…or, How to Be Like Hannah

A-2
5/9/01

Foundations of Style:
Whence The Way?

A program is a document:
– Some of it is read by a computer.

– All of it is read by people.

“Style” is a catch-all term for people-oriented 
programming encompassing all documentation:
– comments, spacing, indentation, names, clear & 

straightforward & well-organized code

A-3
5/9/01

Style “Extremism”:
Literate Programming

…we can best achieve this [better 
documentation] by considering programs to 
be works of literature… Instead of 
imagining that our main task is to instruct a 
computer what to do, let us concentrate 
rather on explaining to human beings what 
we want a computer to do. 

-Donald Knuth 
A-4

5/9/01

Lay it on me…
Why doesn’t style matter?

A-5
5/9/01

But, I don’t need good style 
because the computer doesn’t!
Remember the “obfuscated” code?

The computer “understands” fundamentally 
differently from you!

Just because code is executable, doesn’t mean 
it’s comprehensible.. even to the author!

A-6
5/9/01

Understanding Your Own Code
/* Assigning a value to the pizza door to be shown */
/* the situation that the contestant picks the cable door */
if (cable_door == choice_door){

if (pizza_door != choice_door){
}else{

pizza_door = random_int(3) + 1;
}

if (pizza_door != choice_door)
{ pizza_door = pizza_door;
}else{

pizza_door = random_int(3) + 1;
}
if (pizza_door != choice_door)
{ pizza_door = pizza_door;
}
}



2

A-7
5/9/01

But now, my bare code is 
crystal clear to others!

…the code itself… is something we can run 
but not exactly understand… Even if you 
have the source code in front of you, there 
are limits to what a human reader can 
absorb from thousands of lines of text 
designed primarily to function, not to 
convey meaning. 

-Ellen Ullman (programmer of 20 years)
A-8

5/9/01

And again…

It is the difference between performing 
and exposing a magic trick.

-Ross Williams 

A-9
5/9/01

But, my documentation tells 
exactly what the code does!

/* subtract one from sheep */

sheep = sheep - 1; 

/* account for the sheep that 

the big bad wolf just ate */

sheep = sheep - 1; 

A-10
5/9/01

But, my style is better than 
{yours, this code’s, everyone’s}

/* init the double-buffer windows */
the_hdc = GetDC(hDrawWnd);
offscreen_bitmap =

CreateCompatibleBitmap(the_hdc, 
2*GP142_XMAX+1, 2*GP142_YMAX+FUDGE);

offscreen_DC = CreateCompatibleDC(the_hdc);

A-11
5/9/01

But, this code is so elegant, no 
one could fail to understand it!
reveal_door = 

(prize_door == door_choice) * (door_choice + random_int(2) + 1) +

(prize_door != door_choice)  * (6 - prize_door - door_choice);

reveal_door = (reveal_door - 1) % 3 + 1;

switch_door = 6 - reveal_door - door_choice;

A-12
5/9/01

But this code is solely for me… 
no one will ever look at it again!

���



3

A-13
5/9/01

So, what is The Way?

A-14
5/9/01

Documentation that bites back

• assert in C

• auto-documentation in Java

A-15
5/9/01

Syntactic “Salt”
(and the Python language)
def left_child(self, location):

child = location * 2 + 1
if child >= self.pairs_size:

return None
else:

return child
So… indentation is syntactic salt in Python.
But Python doesn’t have types… therefore?

A-16
5/9/01

Style Summary: 
The Way, Our Way
DO

Use plenty of comments - but not too many
Use white space
Use indentation
Choose descriptive names
Use named constants

DON’T
be terse, tricky 
place speed above correctness, simplicity
use “magic numbers”

Clarity is Job #1!

A-17
5/9/01

QOTD: Guerilla Style Wars

Think of a common bug/problem you have in 
your code.

Now try to imagine a stylistic convention that 
would overcome that.

Example: 
– I might often type = rather than ==.
– If I never write (x == 3) but instead always 

write (3 == x), the compiler will find my bug!

Is the 3 == x convention really good style? Would it really help?
What about your convention?


