
N

N-1

CSE 142
Computer Programming I

Program Style

© 2000 UW CSE
N-2

Aspects of Quality Software

Getting the syntax right
This may seem hard at first, but turns out to
be the easiest part of all

Getting the logic right
Sometimes difficult, but absolutely essential

Today’s focus: Programming with good style
What does this mean, and why does it
matter?

N-3

Programming Style

A program is a document:
Some of it is read by a computer.
ALL of it is read by people.
Donald Knuth: “literate programming”

“Style” is a catch-all term for people-oriented
programming.
comments, spacing, indentation, names
clear, straightforward, well-organized code
code quality

N-4

Style in This Course

Along the way, we suggest and sometimes
require particular points of style in programs
that are turned in for this course.

It is common for employers to have style
requirements that all programmers must
follow.

N-5

Style in This Course

Along the way, we suggest and sometimes
require particular points of style in programs
that are turned in for the on campus version
of this course.

It is common for employers to have style
requirements that all programmers must
follow.

N-6

/* Comments */
/***
* Program: Mi_To_Km
* Purpose: Miles to Km conversion
* Author: A. Hacker, 1/18/00 Sec. AF
(Turing)
***/

/* Calculate volume of cylinder and ...
* Inputs: radius, height, ...
* Output: volume, ...
* Assumes: radius, height nonnegative */

.

.

.
/* Tell user it’s negative. */

Comment
block at
front of
program

Comment
block per
major
section

Small ones
throughout

N

N-7

Required Comments (1)

1. Heading comment at the beginning of each file
Brief explanation of what’s in the file

2. Function heading comments
Describe what the function does
Must explain (define) all parameters and

result
Should never have to read function body to

understand how to call it

N-8

Required Comments (2)
3. Variable declaration comments

Describe information contained in the variable
Not needed for trivial variables if their usage is

obvious (loop indices,etc.)
Should never have to read code that uses a

variable to figure out what’s in it

4. Statement comments
Higher-level summary of what the following

group of statements does (as needed)
Say what, not how
Most individual statements won’t need

comments

N-9

Statement Comments

Say why, don’t paraphrase the code:

NO: /* subtract one from sheep */
sheep = sheep - 1;

YES: /* account for the sheep that
the big bad wolf just ate.*/

sheep = sheep - 1;

N-10

Spaces

Use blank lines to separate major sections.
Vertically align like things:

x = 5 ;
yPrime = 7 ;
z_axis = 4.3;

Leave space around operators:
No: y=slope*x+intercept;
Yes: y = slope * x + intercept ;

Use parentheses for emphasis, too
Yes: y = (slope * x) + intercept ;

N-11

Indentation

Like an outline, indent subordinate parts
Functions

Indent function body
if statements

Indent what's done on true
Indent what's done on false (else)

while and for loops
Indent loop body

Several styles are possible
Be clear, be consistent N-12

Identifiers (Review)

Identifiers name variables and other
things

Letters, digits, and underscores (_)
Can’t begin with a digit
Not a reserved word like double, return

“Case-sensitive”
VAR, Var, var, vAr are all different

Using all CAPITAL letters is legal...
but usually reserved for #define
constants

N

N-13

What’s in a Name?

Extremely valuable documentation.
Microsoft Excel has over 65,000 variables.
How long is just right?
m
mph
miles_per_hour
average_miles_per_hour_that_the_red_car_went
Avoid similar names: mph vs. Mph vs. mqh

N-14

Suggestions for Names

Variables and value-returning functions:
Noun phrase describing information
in variable or value returned by
function

Void functions:
Verb phrase describing action
performed when function is called

N-15

More Examples
OK

rectangleWidth, rectangle_Width,
rectangle_width, length_10_Rectangle

Illegal

10TimesLength, My Variable, int

Legal, but bad style

a1, I, O, xggh0sxx89s,

rectangleWidth and rectanglewidth or
rectangle_width N-16

Clarity

Do “obvious” things the obvious way

No: x = (y = x) + 1 ;

Yes: y = x ;
x = x + 1;

Don’t be tricky, cute, or clever without GOOD
reason.

If so, comment it!

N-17

Named constants:

#define PI 3.14159265
#define HEIGHT 50
#define WIDTH 80
#define AREA (HEIGHT * WIDTH)

...
circle_area = PI * radius * radius ;
volume = length * AREA;

#define (Review)

Note: = and ; are not used for #define
() can be used in #define N-18

Centralize changes

No "magic numbers" (unexplained constants)

use good names instead

Avoid typing errors

Avoid accidental assignments to constants

Using #define is Good Style

#define PI 3.14

...

PI = 17.2 ; syntax error

double pi ;
...

pi = 3.14 ;

...

pi = 17.2 ;

N

N-19

/* Convert miles per hour to feet per second
* Author: ...
* Date: ...
*/

#include <stdio.h>

/* conversion constants. */
#define FEET_PER_MILE 5280.0
#define SECONDS_PER_HOUR (60.0 * 60.0)

int main(void)
{

double miles_per_hour; /* input mph */
/* corresponding feet/sec */

double feet_per_second;
/* corresponding feet/hr */

double feet_per_hour;

/* prompt user for input */
printf("Enter a number of miles per hour: ");
scanf("%lf", &miles_per_hour);

/* convert from miles per hour to feet per
second */

feet_per_hour =
miles_per_hour * FEET_PER_MILE;

feet_per_second =
feet_per_hour / SECONDS_PER_HOUR;

/* format and print results */
printf("%f mph is equal to %f feet per sec.\n",

miles_per_hour, feet_per_second);

return 0;
}

Putting It All Together

N-20

Many small points;
Big cumulative effect...

#include<stdio.h>
int main(void){double v1,v2,v3,v4,v5;printf("Enter"
" a number of miles per hour:");scanf("%lf",&v1);
v5=v1*1.46666667;printf("%f miles per hour is"
" equal to %f feet per second.\n",v1,v5); return 0;}

N-21

Style Summary:
Clarity is Job #1

DO
Use plenty of comments - but not too many
Use white space
Use indentation
Choose descriptive names
Use named constants

DON’T
be terse, tricky
place speed above correctness, simplicity
use “magic numbers”

N-22

QOTD: Guerilla Style Wars

Think of a common bug/problem you have
in your code.

Now try to imagine a stylistic convention
that would overcome that.

Example:
I might often type = rather than ==.
If I never write (x == 3) but instead always write

(3 == x), the compiler will find my bug!

Is the 3 == x convention really good style? Would it really help?
What about your convention?

