
K

K-1

CSE 142
Computer Programming I

Event Driven Programming

© 2000 UW CSE K-2

Two Models of Programming
Traditional, batch processing model:

"Input-process-output"
Program starts up, reads some input,
processes the input, produces some output,
terminates.
Especially suitable for programs that run
with little or no human interaction

More modern model: event-driven
programming

K-3

Event-Driven Programming
Program starts, sets itself up.
Program enters an "event loop", waiting for

some event or command to happen:
mouse click, key click, timer, menu

selection, etc.
Program performs operation ("handles" the

event or command)
Program goes back to its wait loop

Programs using UW’s GP142 graphics
package follow this model

K-4

Simple Command Interpreter

Repeatedly read in "commands" and handle them.

Input (symbolized by single characters)

a -- execute command A by calling process_A()

b -- execute command B by calling process_B()

q -- quit

Pseudocode for main loop:

get next command

if a, execute command A

if b, execute command B

if q, signal quit

K-5

Command Interpreter
Loop Control Schema

repeat until quit signal

use variable “done” to indicate when done

set done to false

while not done {

body statements

if quit command, set done to true

}
K-6

int main(void) {
char command;
int done;

done = FALSE;
while (! done){ /* Input command from user */

command = ReadCommand();
switch (command){
case ’A’:
case ’a’:

process_A(); /* Execute command A */
break;

case ’B’:
case ’b’:

process_B(); /* Execute command B */
break;

case ’Q’:
case ’q’:

done = TRUE; /* quit */
break;

default:
printf("Unrecognized command\n");

}
}
return 0;

}

Command
Interpreter
main ()

K

K-7

QOTD: Event Loops without switch
Find the event loop in HW4.c. Rewrite it without using the switch

statement. Which version do you prefer? Can any switch
be written using only if statements? Is the reverse true?
Here’s the original (abbreviated):

while (!quit) {
nextEvent = GP142_await_event(&mouseX, &mouseY, &keyPressed);
switch (nextEvent) {

case GP142_QUIT:
quit = TRUE; /* set flag to terminate loop */
break;

case GP142_MOUSE:
break;

case GP142_KBD:
if (keyPressed == ’q’ || keyPressed == ’Q’)

{ quit = TRUE; }
else { /* The user has typed in some keyboard input. ... }
break;

case GP142_PERIODIC:
if (gameStatus == GAME_PLAYING) {...}

break;
default:

break;
}

}

