
1

A-1
4/22/2001

A Brief Problem

Read a number from the user.

Print every number from 1 up to the user’s
number.

Did you use a for loop or a while loop?
Why might you use a for loop on this problem?
So… there’s a familiar pattern to the problem that
tells you how to solve it! 4/22/2001

CSE142
Computer Programming I

Loop Development and
Program Schemas

or… Secrets of CSE142 Revealed!

A-3
4/22/2001

Goals for Loop Development

Getting from problem statement to working
code

Systematic loop design and development

Recognizing and reusing code patterns

A-4
4/22/2001

Example: Rainfall Data

General task: Read daily rainfall amounts and
print some interesting information about them.

Input data: Zero or more numbers giving daily
rainfall followed by a negative number (sentinel).

Example input data:

0.2 0.0 0.0 1.5 0.3 0.0 0.1 -1.0

Empty input sequence:

-1.0
Given this problem statement…
Is there just one way to approach the problem?

A-5
4/22/2001

Seattle Rainfall Program

#include <stdio.h>

int main(void) {
/* Print out the daily rain prediction for

tomorrow. */
printf(“yes.\n”);

}

A-6
4/22/2001

Elsewhere… Rainfall Analysis

Some possibilities:
• Just print the data for each day
• Compute and print the answer to:

– How many days worth of data are there?
– How much rain fell on the day with the most rain?
– On how many days was there no rainfall?
– What was the average rainfall over the period?
– What was the median rainfall (half the days have more,

half less)?
– On how many days was the rainfall above average?

What’s similar about these? Different?
Which one is right?



2

A-7
4/22/2001

Example: Print Rainfall Data

#include <stdio.h>

int main (void) {
double rain; /* current rainfall from input */

/* read rainfall amounts and print until sentinel (<0) */

scanf("%lf", &rain);

while (rain >= 0.0) {

printf("%f ", rain);

scanf("%lf", &rain);

}
return 0;

} A-8
4/22/2001

Example: # Days in Input

#include <stdio.h>
int main (void) {

double rain; /* current rainfall from input */
int ndays; /* number of days of input */
/* read rainfall amounts and count number of days */
ndays = 0;
scanf("%lf", &rain);
while (rain >= 0.0) {

ndays = ndays + 1;
scanf("%lf", &rain);

}
printf("# of days input = %d.\n", ndays);
return 0;

}

A-9
4/22/2001

Is There a Pattern Here?

#include <stdio.h>
int main (void) {

double rain;

/* read rainfall amounts */

scanf("%lf", &rain);
while (rain >= 0.0) {

printf("%f ", rain);
scanf("%lf", &rain);

}

return 0;
}

#include <stdio.h>
int main (void) {

double rain;
int ndays;

/* read rainfall amounts */
ndays = 0;
scanf("%lf", &rain);
while (rain >= 0.0) {

ndays = ndays + 1;
scanf("%lf", &rain);

}
printf("# of days %d.\n", ndays);
return 0;

}

A-10
4/22/2001

Pattern: “Read until Sentinel”

#include <stdio.h>
int main (void) {

double variable; /* current input */
declarations;
initial;
scanf("%lf", &variable);
while (variable is not sentinel) {

process;
scanf("%lf", &variable);

}
final;
return 0;

}

We can reuse this pattern…so, we only
have to solve this problem once!

A-11
4/22/2001

Program Patterns

A design pattern is a pattern of code that solves a
general problem.
– Also called a “program schema”

Learn patterns through experience, observation.
Write down your pattern’s name, context,

advantages/disadvantages, and an example or two.

If you encounter a similar problem, you can reuse
the pattern!

A-12
4/22/2001

Tips For Problem Solving

Given a problem to solve, look for a familiar pattern.

Work the problem by hand to gain insight into
possible solutions.

Ask yourself “what am I doing?”

Check your code by hand-tracing on simple test data.



3

A-13
4/22/2001

Secrets of 142 Finally Revealed

Why is this class so hard?

The problems you solve in HW are interesting and
would be difficult for an experienced programmer…

…except that the experienced programmer has seen the
various pieces of these problems before!

This class is so hard because you are building up your
repository of patterns!

A-14
4/22/2001

Back to the Pattern:
“Read until Sentinel”
#include <stdio.h>
int main (void) {

double variable; /* current input */
declarations;
initial;
scanf("%lf", &variable);
while (variable is not sentinel) {

process;
scanf("%lf", &variable);

}
final;
return 0;

}

We can reuse this pattern…so, we only
have to solve this problem once!

A-15
4/22/2001

Pattern Placeholders

In this pattern, variable, declarations, sentinel, initial,
process, and final are placeholders.

variable: holds the current data from input
– Replace every occurrence with your variable.

sentinel: the value that signals end of input
declarations: any additional variables needed
initial: statements needed to initialize variables

before any processing is done
process: the actual work done for each input value
final: operations needed after all input has been

processed A-16
4/22/2001

Print Rainfall Data

double rain; /* current rainfall */
decls:

initial:

scanf("%lf", &rain);
while (rain >= 0.0) {

process:

scanf("%lf", &rain);
}

final:

printf("%f ", rain);

A-17
4/22/2001

Print # Days of No Rain

double rain; /* current rainfall */
decls:

initial:

scanf("%lf", &rain);
while (rain >= 0.0) {

process:

scanf("%lf", &rain);
}

final:

int nDryDays; /* days without rain */

nDryDays = 0;

if (rain == 0.0)
nDryDays = nDryDays + 1;

printf ("Dry days: %d\n",nDryDays);

A-18
4/22/2001

Print Largest Daily Rainfall

double rain; /* current rainfall */
decls:

initial:

scanf("%lf", &rain);
while (rain >= 0.0) {

process:

scanf("%lf", &rain);
}

final:

double maxRain; /* Largest amount
seen so far */

maxRain = 0.0;

if (rain > maxRain)
maxRain = rain;

printf ("Largest rainfall: %f\n",
maxRain);



4

A-19
4/22/2001

Print Average Daily Rainfall

double rain; /* current rainfall */
decls:

initial:

scanf("%lf", &rain);
while (rain >= 0.0) {

process:

scanf("%lf", &rain);
}

final:

double totalRain; /* rain amount */
int nRain; /* days */
totalRain = 0;
nRain = 0;

totalRain = totalRain + rain;
nRain = nRain + 1;

printf ("average rainfall is %f\n",
totalRain / nRain);

A-20
4/22/2001

Print Average Daily Rainfall (2)

double rain; /* current rainfall */
decls:

initial:

scanf("%lf", &rain);
while (rain >= 0.0) {

process:

scanf("%lf", &rain);
}

final:

double totalRain; /* rain amount */
int nRain; /* days */
totalRain = 0;
nRain = 0;

totalRain = totalRain + rain;
nRain = nRain + 1;

if (nRain > 0)
printf ("avg: %f\n", totalRain / nRain);

else printf("No data");

A-21
4/22/2001

Summary

Loop design is not always a top-to-bottom process

Sometimes “process”/ “init”/ “final” is useful, with
“decls” as needed

A program schema is a pattern of code that solves a
general problem

We looked at just one, “Read Until Sentinel.”
Look for other general patterns as you get more

experience A-22
4/22/2001

Bonus! A Whirlwind Tour of
Loops and Patterns
We’re now done with in-class work on

iteration.

But… you should make absolutely sure that
you understand this incredibly important
control flow structure.

It’s at the heart of many vital patterns…

A-23
4/22/2001

Simulation:
Time Ticks

A-24
4/22/2001

“Ray Tracing”:
Iterating over a grid



5

A-25
4/22/2001

Artificial Intelligence:
“Tree Search”

Pictures from
ibm.com A-26

4/22/2001

Artificial Intelligence:
“Tree Search”

DB

GK GK GK GKGK

queen takes
pawn

knight
moves

rook
moves

bishop
takes
knight

blatantly
cheat

DB DBDB

castle
surrender

pawn
moves

… ……

P.S.ComputerSciencetrees
growDOWN!

A-27
4/22/2001

Artificial Intelligence:
“Tree Search”

DB

GK GK GK GKGK

queentakes
pawn

knight
moves

rook
moves

bishop
takes
knight

blatantly
cheat

DB DBDB

castle
surrender

pawn
moves

… ……

P.S. Computer Science trees
grow DOWN!

A-28
4/22/2001

Robotics:
Random Sets and Time Tick

A-29
4/22/2001

QOTD: Time Keeps Slipping…

Imagine your job was to write a simulation that
predicted a value over time…

Say: How much money will Monty lose in n days if
he plays one game of LMAD every day and 4 out
of 5 contestants “keep”?

Describe just the “time tick” pattern that you would
use to write this.

Sketch out each of the elements: name, context,
advantages/disadvantages, and short example.

And, label the parts of the pattern that can be
replaced for any given problem.


