
1

G3-1
4/16/01

CSE142
Computer Programming I

Structuring Program Files

… or Which came first? The prototype or
the definition?

G3-2
4/16/01

Structuring Programs

Programs often use many functions defined
locally and borrowed from libraries.

Organizing functions (and other parts) within
and among .c and .h files is important:
– lets compiler understand how code fits together
– groups logically connected sets of behavior
– allows programmers to separate implementation

of behavior from its specification

G3-3
4/16/01

Big Brother is Watching

Most C compilers will tell you if you call a
function (or use a variable!) improperly:
– too many/few arguments

– trying to use value of a void function

– passing an argument to a parameter with an
incompatible type

How does it know when to warn you?
What does it need to give these warnings?

G3-4
4/16/01

Order in the Program

General principle: identifiers (names) must be
declared before they are used.

• For variables, this means:
place them first within a function

• For symbolic constants (#defined stuff):
place them at the top of the file

• For functions:
declare them before they are called

G3-5
4/16/01

Order for Functions in a .c File

Function names are identifiers, so… they too
must be declared before they are used:
#include <stdio.h>
void fun2 (void) { ... }
void fun1 (void) { ...; fun2(); ... }
int main (void) { ...; fun1(); ... return 0; }

fun1 calls fun2: so, fun2 is defined before fun1.
main calls fun1: so, fun1 is defined before main.

G3-6
4/16/01

A Tangled Web

Insisting that each function entirely precede
any calls to it can be annoying:
– frustrating: write the niggly little functions at

the top and the important ones at the bottom

– inconvenient: printf is a function, but we don’t
want its code in our program!

– impossible: function A calls function B and
function B also calls function A

Is there any solution?
Can anyone help us?

2

G3-7
4/16/01

Look, Up in the Air:
Function Prototypes
Function prototypes allow us to declare the

function’s name without giving its code.

Now we can use it before fully defining it!

In particular, the prototype gives:
– the name of the function

– the return type of the function

– the types of all the function’s parameters

G3-8
4/16/01

Prototype Syntax

Examples:
– void Useless(void);
– void PrintInteger(int value);
– double CalculateTax(double amount,

double rate);

return_type name(type parm1, type parm2, …);
(…like a function with “;” instead of “{…}”!)

Is this enough to call the function?
Bonus: is this enough to understand the function?

G3-9
4/16/01

Using Prototypes

Write prototypes for all your functions near
the top of the program.
– You can call the function anywhere thereafter!

Fully define the function later, wherever it fits
logically.

This is not required by C.
But… it’s highly recommended to
organize and elucidate your program.

G3-10
4/16/01

Structuring Programs

Programs often use many functions defined
locally and borrowed from libraries.

Organizing functions (and other parts) within
and among .c and .h files is important:
– lets compiler understand how code fits together
– groups logically connected sets of behavior
– allows programmers to separate implementation

of behavior from its specification

G3-11
4/16/01

Libraries

Question:
What about library functions, like printf?
Does the compiler need their prototype and code?

Answer: that is the purpose of the #include
directive:
– #include gets printf’s prototype for the compiler
– the linker knows where its body (code) is

G3-12
4/16/01

#include <stdio.h>

The “#include <foo.h>” means:
“get the file foo.h and insert what’s in it right here

(as if it had been typed here)”

stdio.h contains prototypes for scanf, printf, and
the other functions in the standard I/O library

Their implementations (bodies) are NOT there!

The code for these functions is in a library that
is combined with your code by the linker.
So, prototypes enable grouping behaviors and separating
code & spec. You can do this, too! (Not with .h files, for now.)

3

G3-13
4/16/01

Compilers and Linkers and
Executables

library
(ANSI)header

(stdio.h)

executable
program

c
o
m
p
i
l
e
r

l
i
n
k
e
r

source
code

object
code

.c file 01101
00011
01

G3-14
4/16/01

Putting It All Together

#include directives

…
#define constants

…
Function prototypes

…
Full function definitions

…

G3-15
4/16/01

Logical Order vs. Control Flow

With prototypes, your functions can be placed in any
physical order.

Order within the source file has no influence on
control flow.

Programs always start executing at the function
main.
(So, there should always be a main.)

No function is executed until it is called by some
other function (except main).

G3-16
4/16/01

Summary

• Organizing the parts of a .c file is important

• General principle: Identifiers must be declared
before they are used.

• For functions, a prototype can be declared:
– Prototype: near the beginning of the program

– Function detail: later on

• Prototypes allow us to group behaviors logically
and separate implementation from specification.

• Source order and control flow are different concepts

G3-17
4/16/01

QOTD (early):
A Need to Know Basis
Functions tie together a lot of information: return

type, name, parameter types, parameter names,
parameter order, number of parameters, and body.

Which of these aspects of functions should each of
the following need to know?
– the body of the function

– someone trying to use the function

– the compiling and linking processes (together)

In other words: which aspects would each of these
“parties” need to find out about if they changed?

