
1

F-1
4/6/01

Twenty Questions (more or less)

I have three coins, but one of
them is fake!

The fake is heavier than the
others.

You have a scale. What’s the
smallest number of
weighings you can use to
find the fake?

F-2
4/6/01

CSE142
Computer Programming I

Conditionals

…or if it’s true, go ahead you!

if it’s false, fall to else.

F-3
4/6/01

Finding the Fake Coin

Weigh two coins against each other:
– if the left one is heavier, it’s the fake

– otherwise, if the right is heavier, it’s the fake

– otherwise, the remaining one is the fake

How can we do this in C?

F-4
4/6/01

Overview

Conditional execution

if statement

A strange bit of syntax: {Compound statements}

Conditional expressions

Relational and logical operators

F-5
4/6/01

Related Reading

Read Sections 4.1-4.5, 4.7, 4.9
– 4.1: Control structure preview

– 4.2: Relational and logical operators

– 4.3: if statements

– 4.4: Compound statements

– 4.5: Example (uses some future concepts)

– 4.7: Nested if statements

F-6
4/6/01

Control Flow of our Scales

Here’s our algorithm:
control of the process…

flows from box to box.

The algorithm is clearly
stated and deterministic.

The computer should be
able to do it!

left
heavy?

right
heavy?

left is
fake

other one
is fake

right is
fake

yes no

yes no

2

F-7
4/6/01

int i = 1;

Control Flow

“Control flow” is the order in which
statements are executed

Until now, control flow has been sequential:
the next statement executed is the next one that

appears, in order, in the C program

i = i + 1;

printf(“%d”, i);

{
int i = 1;
i = i + 1;
printf(“%d”, i);

}

But… what
are those {}?
Let’s come
back to that!

F-8
4/6/01

choosing which of two
(or more) statements
to execute before
continuing

choosing whether or not
to to skip a statement
before continuing

Conditional Control Flow

F-9
4/6/01

Conditional Execution

Conditional statements allow the computer to
choose an execution path depending on the
value of a variable or expression
– if the withdrawal is more than the bank

balance, then print an error

– if today is my birthday, then add one to my age

– if it’s a 9:30 class, prop your eyelids open;
otherwise (it’s 11:30), gnaw on your arm while
you wait for lunch.

F-10
4/6/01

“Compound statements”

Before we get into writing conditionals in C…

Let’s look at an apparently unrelated bit of
syntax, the “compound statement”.

{
statement1 ;
statement2 ;
...

}

Groups statements so
that they are treated as a
single statement:

Indicates sequential
control flow!

Also called a "block."

F-11
4/6/01

You’ve seen this before…

int main(void) {
printf(“Hello, world!\n”);

return 0;
}

Now, detour over. But keep this in mind.
F-12

4/6/01

Combining and Substituting
Statements

You may use a compound statement anywhere that a
single statement may be used.

Anywhere that a statement is allowed in C, any kind
of statement can be used.

A compound statement can contain any number of
statements (including 0).

Among other things, these principles imply that
compound statements can be nested to any depth.

“nested” means “put inside one another”.

3

F-13
4/6/01

The statement is executed
if the condition is true.

Otherwise, the statement is
skipped!

Conditional ("if") Statement

if (condition)
statement;

if (temperature > 98.6)
printf("You have a fever.\n");

printf("Go see the doc.\n");

if (x < 100)
x = x + 1;

if (withdrawalAmount > balance)

printf("Not enough money\n");

WAIT! There’s something wrong
with the last one. What? F-14

4/6/01

Blocks are Back!

To perform multiple statements conditionally,
we use a compound statement!

if (temperature > 98.6) {
printf("You have a fever.\n");

printf("Go see the doc."\n);
}

if (condition) {
statement1;
statement2;
…

}

If condition is true, all
statements between the
braces are executed.

As a point of style, we will
ALWAYS use the braces
for conditionals!!!

F-15
4/6/01

y = y + 1;

x < 100 ? x = x + 1 ;

if (x < 100) {
x = x + 1 ;

}
y = y + 1; yes

no

Conditional Flow Chart

F-16
4/6/01

Conditions

In parentheses is a condition, also called a
“logical” or “Boolean” expression

Made up of variables, constants, arithmetic
expressions, and the relational operators

Math symbols: < , ≤, >, ≥ , = , ≠
in C: < ,<=, > , >= , == , !=

What should we call ==?

F-17
4/6/01

Conditional Expressions

air_temperature > 80.0
98.6 <= body_temperature
marital_status == ’M’
divisor != 0

Such expressions are used in “if” statements
and numerous other places in C.

F-18
4/6/01

Under the hood in C, it’s really an integer
FALSE is 0 (and 0 is FALSE)
TRUE is 1 (and 1 is TRUE)
TRUE is also any other non-zero value…
But relational ops will always give 1 for TRUE

(e.g., 4 < 7 evaluates to 1)

Value of Conditional
Expressions

What is the value of a conditional
expression??

Answer: we think of it as TRUE or FALSE

4

F-19
4/6/01

Complex Conditionals

if I have at least $15 or you have at least $15,
then we can go to the movies

if the temperature is below 32 degrees and it’s
raining, then it’s snowing

if it’s not the case that it’s Saturday or
Sunday, then it’s a work day

F-20
4/6/01

#define TRUE 1
#define FALSE 0

if (myMoney >= 15.0 || yourMoney >= 15.0) {
canGoToMovies = TRUE;

}

Complex Conditionals in C

C represents these with “Boolean” operators.
Boolean operators: && || !

and or not

More on these later!

F-21
4/6/01

History Break

When we write conditions, we use “Boolean
algebra”, the symbolic representation of logic.

This algebra is at the heart of everything
computers do! Every operation is eventually
calculated in terms of Boolean algebra.

Guess when George Boole invented it…

I guess I was
a bit ahead
of my time.

Almost 150 years ago,
in 1854.

Picture/autobiography thanks to math dept.
U. of St. Andrews, Scotland.

F-22
4/6/01

abs = x;
if (x < 0) {

abs = -x;
}

if (x >= 0) {
abs = x;

} else {
abs = -x;

}

if (x >= 0) {
abs = x;

}
if (x < 0) {

abs = -x;
}

Finding Absolute Value

Problem: Compute the absolute value |x| of x

Put the answer in variable abs.

Which of these is right?

F-23
4/6/01

no ; here!!

if - else

Example: print error message if condition is false:

if (balance >= withdrawal) {

balance = balance - withdrawal ;

dispense_funds (withdrawal) ;

}

else {

printf ("Insufficient Funds! \n ") ;

}

printf("Finished transaction.\n"); F-24
4/6/01

balance >=
withdrawal

printf ("No money! \n ") ;
balance = balance - withdrawal ;

dispense_funds (withdrawal) ;

printf("Finished transation.\n");

noyes

if-else Control Flow

5

F-25
4/6/01

Nested if statements

if (x == 5) {
if (y == 5) {

printf ("Both are 5. \n ") ;
}
else {

printf ("x is 5, but y is not. \n ") ;
}

}
else {

if (y == 5) {
printf ("y is 5, but x is not. \n ") ;

}
else {

printf ("Neither is 5. \n ") ;
}

}

Any statement can
go inside an if
statement.

Therefore, an if
statement can go
inside an if
statement.

F-26
4/6/01

< 15,000

15,000, < 30,000

30,000, < 50,000

50,000, < 100,000

100,000

0%

18%

22%

28%

31%

income tax

Tax Table Example

Problem: Print the % tax based on income:

F-27
4/6/01

Direct Solution

if (income < 15000) {
printf("No tax.");

}
if (income >= 15000 && income < 30000) {

printf("18%% tax.");
}
if (income >= 30000 && income < 50000) {

printf("22%% tax.");
}
if (income >= 50000 && income < 100000) {

printf("28%% tax.");
}
if (income >=100000) {

printf("31%% tax.");
}

Mutually exclusive conditions - only one will be true F-28
4/6/01

if (income < 15000) { if (income < 15000) {
printf("No tax"); printf("No tax");

} else { } else if (income < 30000) {
if (income < 30000) { printf("18%% tax.");

printf("18%% tax."); } else if (income < 50000) {
} else { printf(" 22%% tax.");

if (income < 50000) { } else if (income < 100000) {
printf("22%% tax."); printf("28%% tax.");

} else { } else
if (income < 100000) { printf("31%% tax.");

printf("28%% tax."); }
} else {

printf("31%% tax.");
}

}
}

}

Order is important. Conditions are evaluated in order given.

Cascaded ifs

F-29
4/6/01

Warning: Danger Ahead

The idea of conditional execution is natural ,
intuitive, and highly useful

However...
Programs can get convoluted and hard to
understand
There are syntactic pitfalls to avoid

F-30
4/6/01

status = check_radar () ;

if (status = 1) {

launch_missiles () ;
}

Pitfalls of if:
The World’s Last C Bug

Bug! = is used instead of ==

This is not a syntax error, so the compiler
will not report any errors and the program
can execute

6

F-31
4/6/01

Pitfalls of if, Part II

No:
if (0 <= x <= 10) {

printf ("x is between 0 and 10. \n ") ;
}

Yes:

if (0 <= x && x <= 10) {
printf ("x is between 0 and 10. \n ") ;

}

and

F-32
4/6/01

Pitfalls of if, Part III

& is different from &&

| is different from ||

• & and | are not used in this class, but are
legal C

• If used by mistake, no syntax error, but
program may produce bizarre results

F-33
4/6/01

Pitfalls of if, Part IV

Beware == and != with doubles:
double x ;
x = 30.0 * (1.0 / 3.0) ;
if (x == 10.0) …

Remember! doubles are not exact!

F-34
4/6/01

Next Time

We’ll be discussing functions, a major topic
of the course

Many students find it intellectually
challenging compared to the previous
material.

F-35
4/6/01

QOTD Tomb Raider:
Find and Destroy the Dead Code!

“Dead” code is code that will never be executed no
matter how you run the program.

Find the “dead” code in the following…
if (speed >= 0) {

printf("You don’t go backward.\n");
if (speed == -1) {

printf("Wait! I was wrong!");
}

} else if (speed > 0) {
printf("You go forward.\n");

} else if (speed < 0) {
printf("You go backward.\n");

} else {
printf("What did you do?!\n");

}

Note: we put the
“else” on the same
line as the “}” here.
That’s inconsistent
with what we did
elsewhere (bad style!).
We did it b/c this had
to fit on a slide.

