
1

C-1

What is this?
oo$o$$"$"$ooo

oo$""" """$oo
oo$" "$o

oo" "o
o" "$

$" "$

o$ $o
o$ oo"$o $
$ oo" $ $

$" oo$$ $" "o
$ o$" " $$oo $
$ " "$$ $

$ ooo$"$o o$ $
$ o$"" o$ $
$ o" oo $ $
"$ $$ooooo$"" $o "
$o ""$" $$$ o$
$ $ "$ $"
" oo"" $$o $

o$"" o$$$ o$
ooooo$"" $$ oo"

ooo$""""" o$$ o$
oo$""" o$ oo$"

o$" o"oo"""
o" o$

o$" $
o$" o o$

oo$" $ o $
$$ $o $ $ $

$" $ o$ $" $
$ $ o $" $" $

$ oo $" """$ooooo o$ $" ooo $
$ o$"$o $$ o o $ o$ "" $ $

$" $$" o$ o$ $o o$ o$ $ $ $
$" $$" o" $" o$ o$" $ $ $ "o

$" o$$ o$ o$" o$" o$ $" $ "o $o
$" o$" $"" o$ o$ $$ "$ "$ "$ $

$ o$" $ $" "$ $o $ $ "o $
$oo"" $o "$ "$o $oo "$ $o $o $o
" $o $" $o $$$ "$ $ "o ""oo

"o "$ "$"$$$" $o $o $o $$o
"$ "$ $o "o "$o$$$$"
$ "$$ "o o$$

$$o$$$$" ""$""""

And… what does it have to
do with types and variables? C-2

CSE142
Computer Programming I

Variables

Or… making the best of a bunch of bits.

C-3

What is this?
oo$o$$"$"$ooo

oo$""" """$oo
oo$" "$o

oo" "o
o" "$

$" "$

o$ $o
o$ oo"$o $
$ oo" $ $

$" oo$$ $" "o
$ o$" " $$oo $
$ " "$$ $

$ ooo$"$o o$ $
$ o$"" o$ $
$ o" oo $ $
"$ $$ooooo$"" $o "
$o ""$" $$$ o$
$ $ "$ $"
" oo"" $$o $

o$"" o$$$ o$
ooooo$"" $$ oo"

ooo$""""" o$$ o$
oo$""" o$ oo$"

o$" o"oo"""
o" o$

o$" $
o$" o o$

oo$" $ o $
$$ $o $ $ $

$" $ o$ $" $
$ $ o $" $" $

$ oo $" """$ooooo o$ $" ooo $
$ o$"$o $$ o o $ o$ "" $ $

$" $$" o$ o$ $o o$ o$ $ $ $
$" $$" o" $" o$ o$" $ $ $ "o

$" o$$ o$ o$" o$" o$ $" $ "o $o
$" o$" $"" o$ o$ $$ "$ "$ "$ $

$ o$" $ $" "$ $o $ $ "o $
$oo"" $o "$ "$o $oo "$ $o $o $o
" $o $" $o $$$ "$ $ "o ""oo

"o "$ "$"$$$" $o $o $o $$o
"$ "$ $o "o "$o$$$$"
$ "$$ "o o$$

$$o$$$$" ""$""""

Look at it one way and it’s a wolf…

Look at it another way and it’s just a
bunch of characters.

It’s all in the way you look at it.
…and think about it.

…and change it.
…and use it. C-4

Computers Store Bits
(and that’s it!)
A bit is a binary digit: a 0 or a 1

– any data can be represented by enough bits

– bits are easy to represent in hardware

– bits are an incredible pain to deal with…

C
S
E
1
4
2

The information
in the bits is all
in how we (and
the computer)
look at them!

0 1 0 0 0 0 1 1
0 1 0 1 0 0 1 1
0 1 0 0 0 1 0 1
0 0 1 1 0 0 0 1
0 0 1 1 0 1 0 0
0 0 1 1 0 0 1 0

C-5

Today’s Outline

Memory structure of computers

Types

Variables and identifiers

Assignment statements

Tracing programs

C-6

Review:
Computer Organization

Central
Processing

Unit

Main
Memory

Monitor

Network

Disk

Keyboard
mouse

2

C-7

Memory

Memory is a collection of locations

Each location is a group of bits

To make use of these we need:
– a way of interpreting a location

– a way to reference locations of interest
We use types to do this!

We give the locations names (identifiers),
and use these names to refer to them.

0 1 0 0 0 0 1 1
0 1 0 1 0 0 1 1
0 1 0 0 0 1 0 1
0 0 1 1 0 0 0 1
0 0 1 1 0 1 0 0
0 0 1 1 0 0 1 0

Memory

C-8

Tools:
Types
A type is a way of interpreting a memory

location
– describes the kind of information it can contain

– affects the way we can operate on it

Basic types include
integers: whole numbers: 17, -42 “int” in C

real numbers: 3.14159, 6.02e23 “double” in C

character data: 'a', '?', 'N', ' ', '9' “char” in C

C-9

Type Example

0 1 0 0 0 0 1 1
0 1 0 1 0 0 1 1
0 1 0 0 0 1 0 1
0 0 1 1 0 0 0 1
0 0 1 1 0 1 0 0
1 0 0 0 1 1 1 0

Memory

2’s4’s8’s128’s

‘C’

142

0 1 0 0 0 0 1 1
as a char

1 0 0 0 1 1 1 0as an int

C-10

ASCII Table

ASCII (American Standard Code for Information Exchange)

defines the most common char interpretation for bits.

63 00111111 ?
64 01000000 @
65 01000001 A
66 01000010 B
67 01000011 C
68 01000100 D

…
…

A snippet from
the ASCII table.

C-11

Identifiers
(a fancy word for “names”)
"Identifiers" let us name memory locations

(and lots of other things! more later…)

Using these names we can refer to the
contents of memory locations.

0 0 0 0 0 0 0 0
0 1 0 1 0 0 1 1
0 1 0 0 0 1 0 1
0 0 0 0 0 0 0 1
0 0 1 1 0 1 0 0
1 0 0 0 1 1 1 0

Memory
cse142_grade

letter_grade

my_initial

What’s missing that
would tell us the size of

these locations?
C-12

Rules:
Variables and Types in C
Variable declarations in C (set aside location)

<type> <name>;
int count;
double gasPrice;
char bang;

Picture:

count

gasPrice

bang

(int)

(double)

(char)

What’s
missing from
this picture?

3

C-13

Initialization Values

Variable declarations in C (set aside location)
<type> <name> = <initial_value>;
int count = 12;
double gasPrice = 1.799;
char bang = ’!’;

Picture:

count

gasPrice

bang

12

1.799

’!’

(int)

(double)

(char)
C-14

Types in C

int months;
“Integer” variables represent whole numbers:

1, 17, -32, 0

double student_gpa;
Floating point variables represent real numbers:

3.14, -27.5, 6.022e23, 5.0

char middle_initial, y_or_n_answer;
Represent individual keyboard characters:

'a', 'b', 'M', '0' , '9' , '#' , ' '

Not 1.5, 2.0, ’A’

Not 5, ’A’

Not “Bill”, 0

C-15

Identifier Rules

Your book covers this beautifully! Read it.

Briefly, identifiers:
– contain only letters, digits, and underscore (‘_’)

– do not start with digits

– cannot be “reserved words” (like int)

– are “cAsE-SEnSitIVe”
One way to describe C identifiers is by “grammar rules”:
letter ⇒ a or b or … or z or A or … or Z or _
digit ⇒ 0 or 1 or … or 9
identifier ⇒ letter (letter or digit) (letter or digit) … C-16

The Way: Identifiers (1 of 2)

Any sequence of letters and numbers starting
with a number is a valid identifier:
q, thx1138, _a_Random_varaibel

But, not every sequence of letters and
numbers is an equally good identifier!

You need to understand, remember, and type
them.

So do others reading your code!

C-17

The Way: Identifiers (2 of 2)

The Way of variables means:
– use meaningful names: c vs. count

– name with a descriptive noun

– don’t use similar variable names:
never num_parts and num_parks

– most important: be consistent!
never, ever, ever numParts and num_parts

Are we exempt? No!
– if you find us straying from the way, say so C-18

But what do variables DO?

We can now declare variables, but how do we
use them?

There are two things we might want to do
with a variable:
“access” (find out)

its value

set its value

12
int i

??

??
int i

37

4

C-19

Assignment Statements

total = first_part + second_part;

An assignment statement does both of these.
– the expression on the right is evaluated

(formula of #s and vars.) (calculated out)

– evaluating a variable on the right accesses its value

– the variable on the left is set:
its value becomes the value from the right

C-20

Total Example

double total = 1.0;
double first_part = 2.5;
double second_part = 2.0;
total = first_part + second_part;

1.0
total

2.5
first_part

2.0
second_part

+4.5

4.5

C-21

Variables Everywhere:
my_age = my_age + 1;
How can that be read?

“My age is equal to my age plus one.”

“Set my age to its current value plus 1.”

That’s impossible!
Fortunately, it’s also not what this really says.

Ah… that’s much better. I believe in life again!

Assignments calculate the right side and store
the result on the left. It’s not like algebra!

So, the same variable can appear on both sides! C-22

Some Examples in MSVC

This space accidentally
left blank.

C-23

Putting It All Together:
Sequential Execution
First, all variables are given memory locations

– each variable declaration reserves (sets aside) a
location

– adherents of The Way use names that Make Sense

Next, program execution begins.

“Control” of the CPU flows from one statement
to the next.

Each statement is executed in sequence, one at a
time. …for now. C-24

An Example

/* calculate and print area of 10x3 rectangle */
#include <stdio.h>
int main(void) {

int rectangle_length; /* stores length */
int rectangle_width; /* stores width */
int rectangle_area; /* stores result (area) */
rectangle_length = 10;
rectangle_width = 3;
rectangle_area = rectangle_length * rectangle_width ;
printf("%d", rectangle_area);
return 0;

}

5

C-25

Hand Simulation (Trace)

A useful practice is to simulate by hand the operation of
the program, step by step.

This program has three variables, which we can depict by
drawing boxes or making a table.

We mentally execute each of the instructions, in sequence,
and refer to the variables to determine the effect of the
instruction

C-26

Tracing the Program

??10after statement 1

???after declaration

rectangle_arearectangle_widthrectangle_length

C-27

Tracing the Program

30310after statement 3

?310after statement 2

??10after statement 1

???after declaration

rectangle_arearectangle_widthrectangle_length

C-28

Initializing Variables

Initialization means giving something a value
for the first time.

Anything which changes the value of a
variable is a potential way of initializing it.
– initial value in a declaration: int i = 7;

– assignment statement: count = 0;

C-29

Initialization Rule

General rule: variables have to be initialized
before their value is used.

Failure to initialize...
– is a common source of bugs

– is a semantic error, not a syntax error

Why is this? What’s the problem?
What might variables “start” as?

C-30

Declaring vs Initializing

int main (void) {
double income; /* declaration of income, not an

assignment or initialization */
income = 35500.00; /* assignment to income,

initialization of income,
not a declaration.*/

printf ("Old income is %f", income);
income = 39000.00; /* assignment to income, not a

declaration,or initialization */
printf ("After raise: %f", income);

return 0;
}

6

C-31

Algorithm (result of analysis):

Celsius = 5/9 (Fahrenheit - 32)

What kind of data (result of analysis):

double fahrenheit, celsius;

Example Problem:
Fahrenheit to Celsius
Problem (specified):

Convert Fahrenheit temperature to Celsius

C-32

#include <stdio.h>
int main(void)
{

double fahrenheit, celsius;

celsius = (fahrenheit - 32.0) * 5.0 / 9.0;

return 0;
}

Fahrenheit to Celsius (I)
An actual C program

Any problems?

C-33

#include <stdio.h>

int main(void)
{

double fahrenheit, celsius;
printf("Enter a Fahrenheit temperature: ");
scanf("%lf", &fahrenheit);
celsius = (fahrenheit - 32.0) * 5.0 / 9.0;
printf("That equals %f degrees Celsius.",

celsius);
return 0;

}

Fahrenheit to Celsius (II)

C-34

Enter a Fahrenheit temperature: 45.5
That equals 7.500000 degrees Celsius

Program trace
fahrenheit celsius

after declaration ? ?
after first printf ? ?
after scanf 45.5 ?
after assignment 45.5 7.5
after second printf 45.5 7.5

Running the Program

C-35

celsius = (fahrenheit-32.0) * 5.0 / 9.0 ;

1. Evaluate right-hand side

a. Find current value of fahrenheit 72.0
b. Subtract 32.0 40.0
b. Multiply by 5.0 200.0
c. Divide by 9.0 22.2

2. Assign 22.2 to be the new value of celsius

(the old value of celsius is lost.)

Assignment step-by-step

C-36

Fahrenheit to Celsius (III)

#include <stdio.h>

int main(void)
{

double fahrenheit, celsius;
printf("Enter a Fahrenheit temperature: ");
scanf("%lf", &fahrenheit);
celsius = fahrenheit - 32.0 ;
celsius = celsius * 5.0 / 9.0 ;
printf("That equals %f degrees Celsius.",

celsius);
return 0;

}

7

C-37

Does Terminology Matter?

Lots of new terminology today!
Variable, type, reserved word, initialization, declaration,

statement, assignment, etc., etc.

You can write a complicated program without using
these words…

But you can't talk about your programs without
them!

Learn the exact terminology as you go, and get in the
habit of using it.

C-38

Next Lecture: Expressions

Each lecture builds on the previous ones, so...
be sure you’re solid with this material
before going on!

C-39

QOTD: the Good, the Bad, and
the Ugly

For each of the situations
on the right, give a
variable name that is…

Good: legal, follows the Way

Bad: illegal

Ugly: legal, strays from the
Way

A variable to store the
user’s middle initial.

A variable that stores the
number of times the
user hits the ‘*’ key.

A variable that stores the
URL of your section’s
home page.

Can you make these creative, funny, or subtle?

